Sumali sa IDNStudy.com at makakuha ng mabilis at maaasahang mga sagot. Makakuha ng mabilis at eksaktong sagot sa iyong mga tanong mula sa aming mga eksperto na laging handang tumulong.

Find the reciprocal of:​

Find The Reciprocal Of class=

Sagot :

[tex]Sure, let's break down the problem step by step.

First, consider the expression given:

\[

\left( -\frac{8}{11} \right)^{-5} + \left( \left( -\frac{8}{11} \right)^2 \right)^3

\]

Let's simplify each part separately:

1. Simplify \(\left( -\frac{8}{11} \right)^{-5}\):

Using the property of exponents: \(a^{-n} = \frac{1}{a^n}\)

\[

\left( -\frac{8}{11} \right)^{-5} = \frac{1}{\left( -\frac{8}{11} \right)^5}

= \frac{1}{\left( -\frac{8}{11} \right)^5}

= \left( -\frac{11}{8} \right)^5 = - \left( \frac{11}{8} \right)^5

\]

2. Simplify \(\left( \left( -\frac{8}{11} \right)^2 \right)^3\):

Using the property of exponents: \((a^m)^n = a^{mn}\)

\[

\left( \left( -\frac{8}{11} \right)^2 \right)^3 = \left( -\frac{8}{11} \right)^{2 \cdot 3} = \left( -\frac{8}{11} \right)^6

= \left( \frac{8}{11} \right)^6

\]

So now, our expression becomes:

\[

-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6

\]

We need to find the reciprocal of this expression:

\[

\text{Reciprocal of}\left[ -\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6 \right]

= \frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}

\]

So the reciprocal of the given expression is:

\[

\boxed{\frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}}

\][/tex]