IDNStudy.com, ang iyong destinasyon para sa mabilis at kaugnay na mga sagot. Tuklasin ang libu-libong mga sagot na na-verify ng mga eksperto at hanapin ang mga solusyong kailangan mo, anuman ang paksa.

Find the reciprocal of:​

Find The Reciprocal Of class=

Sagot :

[tex]Sure, let's break down the problem step by step.

First, consider the expression given:

\[

\left( -\frac{8}{11} \right)^{-5} + \left( \left( -\frac{8}{11} \right)^2 \right)^3

\]

Let's simplify each part separately:

1. Simplify \(\left( -\frac{8}{11} \right)^{-5}\):

Using the property of exponents: \(a^{-n} = \frac{1}{a^n}\)

\[

\left( -\frac{8}{11} \right)^{-5} = \frac{1}{\left( -\frac{8}{11} \right)^5}

= \frac{1}{\left( -\frac{8}{11} \right)^5}

= \left( -\frac{11}{8} \right)^5 = - \left( \frac{11}{8} \right)^5

\]

2. Simplify \(\left( \left( -\frac{8}{11} \right)^2 \right)^3\):

Using the property of exponents: \((a^m)^n = a^{mn}\)

\[

\left( \left( -\frac{8}{11} \right)^2 \right)^3 = \left( -\frac{8}{11} \right)^{2 \cdot 3} = \left( -\frac{8}{11} \right)^6

= \left( \frac{8}{11} \right)^6

\]

So now, our expression becomes:

\[

-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6

\]

We need to find the reciprocal of this expression:

\[

\text{Reciprocal of}\left[ -\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6 \right]

= \frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}

\]

So the reciprocal of the given expression is:

\[

\boxed{\frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}}

\][/tex]