Sumali sa IDNStudy.com at makakuha ng mga sagot ng eksperto. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find the reciprocal of:​

Find The Reciprocal Of class=

Sagot :

[tex]Sure, let's break down the problem step by step.

First, consider the expression given:

\[

\left( -\frac{8}{11} \right)^{-5} + \left( \left( -\frac{8}{11} \right)^2 \right)^3

\]

Let's simplify each part separately:

1. Simplify \(\left( -\frac{8}{11} \right)^{-5}\):

Using the property of exponents: \(a^{-n} = \frac{1}{a^n}\)

\[

\left( -\frac{8}{11} \right)^{-5} = \frac{1}{\left( -\frac{8}{11} \right)^5}

= \frac{1}{\left( -\frac{8}{11} \right)^5}

= \left( -\frac{11}{8} \right)^5 = - \left( \frac{11}{8} \right)^5

\]

2. Simplify \(\left( \left( -\frac{8}{11} \right)^2 \right)^3\):

Using the property of exponents: \((a^m)^n = a^{mn}\)

\[

\left( \left( -\frac{8}{11} \right)^2 \right)^3 = \left( -\frac{8}{11} \right)^{2 \cdot 3} = \left( -\frac{8}{11} \right)^6

= \left( \frac{8}{11} \right)^6

\]

So now, our expression becomes:

\[

-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6

\]

We need to find the reciprocal of this expression:

\[

\text{Reciprocal of}\left[ -\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6 \right]

= \frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}

\]

So the reciprocal of the given expression is:

\[

\boxed{\frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}}

\][/tex]

Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.