Tuklasin kung paano ka matutulungan ng IDNStudy.com na makuha ang mga sagot na kailangan mo. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.

how do i solve this? answer should be
[tex]2 \sqrt[3]{4} [/tex]
according to the reviewer.

The question is the attached photo.​


How Do I Solve This Answer Should Be Tex2 Sqrt34 Texaccording To The ReviewerThe Question Is The Attached Photo class=

Sagot :

Answer:

The product of [tex](\sqrt[3]{4})(\sqrt{2})(\sqrt[6]{8})[/tex] is [tex]2\sqrt[3]{4}[/tex].

Step-by-step explanation:

  1. Transform the radicand into similar bases.
    [tex](\sqrt[3]{4})(\sqrt{2})(\sqrt[6]{8})=(\sqrt[3]{2^{2} })(\sqrt{2})(\sqrt[6]{2^{3}})[/tex]
  2. Change the following from radicals to exponents. Note that when radicals turn into exponents, the radicand's exponent is the numerator, while the index or the nth root is the denominator.
    [tex](\sqrt[3]{2^{2} })(\sqrt{2})(\sqrt[6]{2^{3}})\\(2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{3}{6} })[/tex]

    3/6 when simplified is 1/2.
    [tex](2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{3}{6} })\\(2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{1}{2} })[/tex]
  3. By the product law (laws of exponent),  [tex]a^{m}*a^{n} =a^{m+n}[/tex].
    [tex](2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{1}{2} })\\2^{\frac{2}{3}+\frac{1}{2}+\frac{1}{2}}\\ 2^{\frac{2}{3}+1 } \\2^{1\frac{2}{3} } =2^{\frac{5}{3} }[/tex]
  4. You can now transform your answer back into a radical form.
    [tex]2^{\frac{5}{3} } =\sqrt[3]{2^{5} }[/tex]
  5. Simplify
    [tex]\sqrt[3]{2^{5} }\\ \sqrt[3]{32}\\ \sqrt[3]{(8)(4)} \\2\sqrt[3]{4}[/tex]