Suriin ang malawak na saklaw ng mga paksa sa IDNStudy.com. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.
Sagot :
To determine the number of players who play all three sports, we can apply the principle of the Inclusion-Exclusion formula.
Let's denote the number of players who play football as F, basketball as B, and volleyball as V. According to the problem:
F = 14 (Football players)
B = 7 (Basketball players)
V = 15 (Volleyball players)
We are also given that 2 players play all three sports, and 4 players play both football and volleyball only. Using the Inclusion-Exclusion principle:
N(F ∪ B ∪ V) = N(F) + N(B) + N(V) - N(F ∩ B) - N(F ∩ V) - N(B ∩ V) + N(F ∩ B ∩ V)
Substitute the given values:
N(F ∪ B ∪ V) = 14 + 7 + 15 - 4 - 2 - 7 + 2
N(F ∪ B ∪ V) = 25
Therefore, the total number of players who play all three sports is 2.
Pinahahalagahan namin ang bawat ambag mo. Patuloy na magbahagi ng impormasyon at karanasan. Sama-sama tayong magtutulungan upang makamit ang ating mga layunin. Bawat tanong ay may sagot sa IDNStudy.com. Salamat sa pagpili sa amin at sa muling pagkikita.