IDNStudy.com, ang iyong mapagkukunan ng mabilis at pangkomunidad na mga sagot. Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

Question 7/50 A solid has a circular base of radius 10 cm. Find the volume of the solid if every plane perpendicular to a fixed diameter is a square.

Sagot :

Answer:

To find the volume of the solid with a circular base of radius 10 cm where every plane perpendicular to a fixed diameter is a square, we can use the formula for the volume of a pyramid:

V = (1/3) × A × h

Where:

- V is the volume of the pyramid

- A is the area of the base

- h is the height of the pyramid

Given:

- Radius of the circular base (r) = 10 cm

- Every plane perpendicular to a fixed diameter is a square

Step 1: Calculate the area of the circular base.

Area of a circle = π × r²

Area of the circular base = π × (10 cm)² = 314.16 cm²

Step 2: Find the height of the pyramid.

Since every plane perpendicular to a fixed diameter is a square, the height of the pyramid is equal to the side length of the square.

Let the side length of the square be s.

The diagonal of the square is equal to the diameter of the circle.

Diagonal of a square = s × √2

Diameter of the circle = 2 × r = 20 cm

s × √2 = 20 cm

s = 20 cm / √2 = 14.14 cm

Step 3: Calculate the volume of the pyramid using the formula.

V = (1/3) × A × h

V = (1/3) × 314.16 cm² × 14.14 cm

V = 1477.78 cm³

Therefore, the volume of the solid is approximately 1477.78 cm³.

Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang komunidad ng karunungan. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.