Suriin ang IDNStudy.com para sa mabilis at kaugnay na mga sagot. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.

In the diagram shown, triangle rqs ~ triangle rpt
b. If RQ 8, RS-6, and RT=18, find RP.



Sagot :

Answer:

To solve for \( RP \), we need to use the properties of similar triangles. Given that \( \triangle RQS \sim \triangle RPT \), corresponding sides of similar triangles are proportional.

We are given the following information:

- \( RQ = 8 \)

- \( RS = 6 \)

- \( RT = 18 \)

Since \( \triangle RQS \sim \triangle RPT \), the ratio of the corresponding sides is the same. We need to find \( RP \).

We know:

\[ \frac{RQ}{RP} = \frac{RS}{RT} \]

Given:

- \( RQ = 8 \)

- \( RS = 6 \)

- \( RT = 18 \)

We need to find \( RP \). Let's call \( RP \) as \( x \).

Thus, we set up the proportion:

\[ \frac{RQ}{RP} = \frac{RS}{RT} \]

\[ \frac{8}{x} = \frac{6}{18} \]

Simplify the right side of the equation:

\[ \frac{6}{18} = \frac{1}{3} \]

So the proportion becomes:

\[ \frac{8}{x} = \frac{1}{3} \]

Now, solve for \( x \) by cross-multiplying:

\[ 8 \times 3 = x \times 1 \]

\[ 24 = x \]

Therefore, \( RP = 24 \).