Maligayang pagdating sa IDNStudy.com, ang iyong platform para sa lahat ng iyong katanungan! Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

In the diagram shown, triangle rqs ~ triangle rpt
b. If RQ 8, RS-6, and RT=18, find RP.



Sagot :

Answer:

To solve for \( RP \), we need to use the properties of similar triangles. Given that \( \triangle RQS \sim \triangle RPT \), corresponding sides of similar triangles are proportional.

We are given the following information:

- \( RQ = 8 \)

- \( RS = 6 \)

- \( RT = 18 \)

Since \( \triangle RQS \sim \triangle RPT \), the ratio of the corresponding sides is the same. We need to find \( RP \).

We know:

\[ \frac{RQ}{RP} = \frac{RS}{RT} \]

Given:

- \( RQ = 8 \)

- \( RS = 6 \)

- \( RT = 18 \)

We need to find \( RP \). Let's call \( RP \) as \( x \).

Thus, we set up the proportion:

\[ \frac{RQ}{RP} = \frac{RS}{RT} \]

\[ \frac{8}{x} = \frac{6}{18} \]

Simplify the right side of the equation:

\[ \frac{6}{18} = \frac{1}{3} \]

So the proportion becomes:

\[ \frac{8}{x} = \frac{1}{3} \]

Now, solve for \( x \) by cross-multiplying:

\[ 8 \times 3 = x \times 1 \]

\[ 24 = x \]

Therefore, \( RP = 24 \).

Pinahahalagahan namin ang bawat ambag mo. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.