Makakuha ng detalyadong mga sagot sa lahat ng iyong katanungan sa IDNStudy.com. Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.
The equation x² - 4y² - 2x - 40y - 103 = 0 can be expressed as an ellipse in standard form by completing the square for both x and y terms.
First, rearrange the equation by grouping the x and x terms together and the y and y terms together:
(x² - 2x) - 4(y² + 10y) = 103
Complete the square for x and y terms:
[(x - 1)² - 1] - 4[(y + 5)² - 25] = 103
Expand the squared terms:
(x - 1)² - 4(y + 5)² + 100 = 103
Rearrange and simplify:
(x - 1)² - 4(y + 5)² = 3
Therefore, the equation of the ellipse in standard form is:
(x - 1)²/3 - 4(y + 5)²/3 = 1
This standard form allows for a clear interpretation of the ellipse's center, semi-major and semi-minor axes lengths, and orientation.