Suriin ang IDNStudy.com para sa mabilis na mga solusyon sa iyong mga problema. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Sagot :
Answer:
To determine the values of \( x \) that are not in the domain of \( f(x) = \frac{x^2 + 6x + 5}{x^2 - 9} \), we identify where the denominator is zero because division by zero is undefined.
The denominator of \( f(x) \) is \( x^2 - 9 \). We set the denominator equal to zero to find the values where \( f(x) \) is undefined:
\[ x^2 - 9 = 0 \]
Solving for \( x \):
\[ x^2 = 9 \]
\[ x = \pm 3 \]
Therefore, \( x = 3 \) and \( x = -3 \) are the values where \( f(x) \) is not defined because they make the denominator zero.
Step-by-step explanation:
- The function \( f(x) \) is undefined where the denominator \( x^2 - 9 \) equals zero because division by zero is not allowed in mathematics.
- By solving \( x^2 - 9 = 0 \), we find that \( x = \pm 3 \).
- Hence, \( x = 3 \) and \( x = -3 \) are the values where \( f(x) \) is undefined, indicating these points are outside the domain of the function \( f(x) \).
Salamat sa iyong pakikilahok. Huwag kalimutang magtanong at magbahagi ng iyong kaalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.