Makahanap ng mga solusyon sa iyong mga problema sa tulong ng mga eksperto ng IDNStudy.com. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.

F(x) =x^2+6x+5/x^2-9 find all values of x that are not in the domain of f

Sagot :

Answer:

To determine the values of \( x \) that are not in the domain of \( f(x) = \frac{x^2 + 6x + 5}{x^2 - 9} \), we identify where the denominator is zero because division by zero is undefined.

The denominator of \( f(x) \) is \( x^2 - 9 \). We set the denominator equal to zero to find the values where \( f(x) \) is undefined:

\[ x^2 - 9 = 0 \]

Solving for \( x \):

\[ x^2 = 9 \]

\[ x = \pm 3 \]

Therefore, \( x = 3 \) and \( x = -3 \) are the values where \( f(x) \) is not defined because they make the denominator zero.

Step-by-step explanation:

- The function \( f(x) \) is undefined where the denominator \( x^2 - 9 \) equals zero because division by zero is not allowed in mathematics.

- By solving \( x^2 - 9 = 0 \), we find that \( x = \pm 3 \).

- Hence, \( x = 3 \) and \( x = -3 \) are the values where \( f(x) \) is undefined, indicating these points are outside the domain of the function \( f(x) \).