Makahanap ng mabilis at maaasahang mga solusyon sa iyong mga problema sa IDNStudy.com. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.
Sagot :
[tex]\sf\pink{. . • ☆ . ° .• °:. *₊ ° . ☆. . • ☆ . ° .• °:. *₊ ° . ☆}[/tex]
[tex]\pink{\mathbb{\huge{꧁ᬊᬁ~ANSWER~ᬊ᭄꧂}}}[/tex]
Step-by-step solution:
1) Given:
[tex]\sf\pink{ᯓ★}[/tex] Initial horizontal velocity (v₀): 20 m/s
[tex]\sf\pink{ᯓ★}[/tex] Horizontal distance traveled (d): 60 m
[tex]\sf\pink{ᯓ★}[/tex] Acceleration due to gravity (g): 10 m/s²
2) Horizontal motion:
[tex]\sf\pink{ᯓ★}[/tex] Horizontal velocity remains constant: vx = v₀ = 20 m/s
[tex]\sf\pink{ᯓ★}[/tex] Horizontal distance: d = v₀ • t
3) Vertical motion:
[tex]\sf\pink{ᯓ★}[/tex] Initial vertical velocity (v₀y): 0 m/s
[tex]\sf\pink{ᯓ★}[/tex] Vertical acceleration: ay = -g = -10 m/s²
[tex]\sf\pink{ᯓ★}[/tex] Vertical displacement (height): h = [tex]\large{\frac{1}{2}}[/tex] • ay • t²
4) Equating horizontal distances:
[tex]\sf\pink{ᯓ★}[/tex] d = v₀ • t
[tex]\sf\pink{ᯓ★}[/tex] 60 = 20 • t
[tex]\sf\pink{ᯓ★}[/tex] t = [tex]\large{\frac{60}{20}}[/tex] = 3 s
5) Calculating height:
[tex]\sf\pink{ᯓ★}[/tex] h = [tex]\large{\frac{1}{2}}[/tex] • (-10) • 3²
[tex]\sf\pink{ᯓ★}[/tex] h = [tex]\large{\frac{1}2{}}[/tex] • 90
[tex]\sf\pink{ᯓ★}[/tex] h = 45 m
[tex]\sf\pink{╴╴╴╴╴⊹ꮺ˚ ╴╴╴╴╴⊹˚ ╴╴╴╴˚ೃ ╴╴}[/tex]
So in summary, with the given initial velocity of 20 m/s and the projectile landing 60 m horizontally from the base, the height of the tower must be [tex]\blue{\underline{\sf\pink{45 ~m}}}[/tex].
[tex]\bold{\small\pink{⋆˚࿔~ ashrieIIe~˚⋆}}[/tex] [tex]\pink{\heartsuit}[/tex]
[tex]\sf\pink{. . • ☆ . ° .• °:. *₊ ° . ☆. . • ☆ . ° .• °:. *₊ ° . ☆}[/tex]
Ang iyong kontribusyon ay napakahalaga sa amin. Patuloy na magbahagi ng impormasyon at kasagutan. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.