IDNStudy.com, ang perpektong platform para sa mabilis at eksaktong mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.

A body is projected horizontally from the top of a tower with a velocity of 20m/s it landed on a grand level a
t a horizontal distance of 60m from the foot of the tower. Calculate the height of the tower (g=10m/s²)


Sagot :

[tex]\sf\pink{.  . • ☆ . ° .• °:. *₊ ° . ☆.  . • ☆ . ° .• °:. *₊ ° . ☆}[/tex]

[tex]\pink{\mathbb{\huge{꧁ᬊᬁ~ANSWER~ᬊ᭄꧂}}}[/tex]

Step-by-step solution:

1) Given:

[tex]\sf\pink{ᯓ★}[/tex] Initial horizontal velocity (v₀): 20 m/s

[tex]\sf\pink{ᯓ★}[/tex] Horizontal distance traveled (d): 60 m

[tex]\sf\pink{ᯓ★}[/tex] Acceleration due to gravity (g): 10 m/s²

2) Horizontal motion:

[tex]\sf\pink{ᯓ★}[/tex] Horizontal velocity remains constant: vx = v₀ = 20 m/s

[tex]\sf\pink{ᯓ★}[/tex] Horizontal distance: d = v₀ • t

3) Vertical motion:

[tex]\sf\pink{ᯓ★}[/tex] Initial vertical velocity (v₀y): 0 m/s

[tex]\sf\pink{ᯓ★}[/tex] Vertical acceleration: ay = -g = -10 m/s²

[tex]\sf\pink{ᯓ★}[/tex] Vertical displacement (height): h = [tex]\large{\frac{1}{2}}[/tex] • ay • t²

4) Equating horizontal distances:

[tex]\sf\pink{ᯓ★}[/tex] d = v₀ • t

[tex]\sf\pink{ᯓ★}[/tex] 60 = 20 • t

[tex]\sf\pink{ᯓ★}[/tex] t = [tex]\large{\frac{60}{20}}[/tex] = 3 s

5) Calculating height:

[tex]\sf\pink{ᯓ★}[/tex] h = [tex]\large{\frac{1}{2}}[/tex] • (-10) • 3²

[tex]\sf\pink{ᯓ★}[/tex] h = [tex]\large{\frac{1}2{}}[/tex] • 90

[tex]\sf\pink{ᯓ★}[/tex] h = 45 m

[tex]\sf\pink{╴╴╴╴╴⊹ꮺ˚ ╴╴╴╴╴⊹˚ ╴╴╴╴˚ೃ ╴╴}[/tex]

So in summary, with the given initial velocity of 20 m/s and the projectile landing 60 m horizontally from the base, the height of the tower must be [tex]\blue{\underline{\sf\pink{45 ~m}}}[/tex].

[tex]\bold{\small\pink{⋆˚࿔~ ashrieIIe~˚⋆}}[/tex] [tex]\pink{\heartsuit}[/tex]

[tex]\sf\pink{.  . • ☆ . ° .• °:. *₊ ° . ☆.  . • ☆ . ° .• °:. *₊ ° . ☆}[/tex]