IDNStudy.com, ang iyong mapagkukunan para sa maaasahan at pangkomunidad na mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.

Determine the vertex of the parabola:

2x^2 - 36x + 164


Sagot :

Answer:

(9,1)

Step-by-step explanation:

I am assuming this is y = 2x² - 36x + 164

Let's solve it in two ways.

a. STANDARD FORM

The standard form of a function is y = ax² + bx + c and look, our problem is already in this form so we can now use the formula, -b/2a, to find the x coordinate (x = -b/2a is also the formula for the axis of symmetry). a = 2 b = -36

  • x = -(-36) / 2(2)
  • x = 36/4
  • x = 9

Now, let's go ahead and substitute this value of x to the original equation.

  • y = 2(9)² - 36(9) + 164
  • y = 162 - 325 + 164
  • y = 1

So, combining our values together into a coordinate, we'll have (9,1).

b. VERTEX FORM

For this one, we'll transform the equation a bit to turn it into its vertex form, that is, y = a(x - h)² + k, and from that we'll have our coordinate for the vertex which is (h,k).

y = 2x² - 36x + 164 » y = 2(x - 9)² + 1

This means that h = 9 and k = 1 so our vertex will be at (9,1).

Salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong karanasan at kaalaman. Sama-sama tayong magtutulungan upang makamit ang ating mga layunin. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.