Makakuha ng mga sagot ng eksperto sa iyong mga tanong sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.
Answer:
50 N/mm²
Step-by-step explanation:
To determine the maximum normal stress in the bar ABCD, you need to find the maximum force experienced by the bar and then use the formula for normal stress, which is:
[tex][ \sigma = \frac{F}{A} ][/tex]
where:
[tex](\sigma) is the normal stress,(F) is the force applied,(A) is the cross-sectional area.[/tex]
From the information provided:
[tex]Cross-sectional area, (A = 600 \text{ mm}^2).Forces acting on different sections of the bar are 25 kN, 20 kN, and 30 kN.[/tex]
First, we need to convert the forces to Newtons (1 kN = 1000 N):
• 25 kN = 25,000 N
• 20 kN = 20,000 N
• 30 kN = 30,000 N
Next, we identify the maximum force, which is 30,000 N.
Finally, we calculate the maximum normal stress:
[tex][ \sigma_{\text{max}} = \frac{F_{\text{max}}}{A} = \frac{30,000 \text{ N}}{600 \text{ mm}^2} = 50 \text{ N/mm}^2 ][/tex]
Therefore, the maximum normal stress in the bar is 50 N/mm².