Makahanap ng mga solusyon at sagot sa lahat ng iyong katanungan sa IDNStudy.com. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad na may kaalaman.

3. Work on a real-life situation where inverse proportion is involved e.g. In a construction company, a supervisor claims that 7 men can complete a task in 42 days. In how many days’ will 14 men finish the same task?

Sagot :

[tex]\sf\pink{.  . • ☆ . ° .• °:. *₊ ° . ☆.  . • ☆ . ° .• °:. *₊ ° . ☆}[/tex]

[tex]\pink{\mathbb{\huge{꧁ᬊᬁ~ANSWER~ᬊ᭄꧂}}}[/tex]

[tex]\rm{\pink{Step~by~step:}}[/tex]

We are given that 7 men can complete a task in 42 days.

This means the product of the number of men and the number of days is constant.

We can represent this as:

  • 7 × 42 = k
  • Where k is the constant.

We want to find how many days 14 men will take to complete the same task.

Let's call this unknown number of days D2.

We know that the product of the number of men and the number of days is always equal to k.

So:

  • 7 × 42 = 14 × D2

Simplifying the left side:

  • 294 = 14 × D2

Dividing both sides by 14:

  • D2 = [tex]\large{\frac{219}{14}}[/tex]
  • = [tex]\blue{\underline{\sf\pink{21}}}[/tex]

[tex]\sf\pink{╴╴╴╴╴⊹ꮺ˚ ╴╴╴╴╴⊹˚ ╴╴╴╴˚ೃ ╴╴}[/tex]

[tex]\pink{\boxed{\sf\pink{ࠬܓ}}}[/tex] Therefore, 14 men will complete the same task in [tex]\blue{\underline{\sf\pink{21~days}}}[/tex].

[tex]\bold{\small\pink{⋆˚࿔~ ashrieIIe~˚⋆}}[/tex] [tex]\pink{\heartsuit}[/tex]

[tex]\sf\pink{.  . • ☆ . ° .• °:. *₊ ° . ☆.  . • ☆ . ° .• °:. *₊ ° . ☆}[/tex]