Sumali sa IDNStudy.com at simulang makuha ang maaasahang mga sagot. Sumali sa aming komunidad ng mga bihasa upang makahanap ng mga sagot na kailangan mo sa anumang paksa o problema.

For sand, the maximum and minimum possible void ratios were determined in the laboratory to be 0.94 and 0.33, respectively. (a) Find the in-situ moist unit weight of the sand in kN/m3 compacted in the field at a relative density of 60%. The specific gravity of the sand is 2.65 and its in-situ moisture content is 10%. (b) Calculate the maximum and minimum dry unit weight in kN/m that the sand can have.

Sagot :

Answer:

(a) To find the in-situ moist unit weight of the sand, we can use the following equation:

\[

\gamma = (1 + e) \times \frac{\gamma_w \times G}{1 + w}

\]

where:

\(\gamma\) = in-situ moist unit weight of the sand (kN/m³)

\(e\) = void ratio

\(\gamma_w\) = unit weight of water (9.81 kN/m³)

\(G\) = specific gravity of the sand

\(w\) = moisture content

Given:

\(e = 1 - \frac{D_r}{D_{r \text{ max}}} = 1 - \frac{60}{100} = 0.4\)

\(G = 2.65\)

\(w = 0.10\)

Substitute the values into the formula:

\[

\gamma = (1 + 0.4) \times \frac{9.81 \times 2.65}{1 + 0.1} = 1.4 \times \frac{9.81 \times 2.65}{1.1} = 21.09 \, \text{kN/m³}

\]

So, the in-situ moist unit weight of the sand is 21.09 kN/m³.

(b) To calculate the maximum and minimum dry unit weight, we use the formula:

\[

\text{Maximum dry unit weight} = \frac{G}{1 + e_{\text{min}}} \times \gamma_w

\]

\[

\text{Minimum dry unit weight} = \frac{G}{1 + e_{\text{max}}} \times \gamma_w

\]

Given:

\(e_{\text{max}} = 0.94\)

\(e_{\text{min}} = 0.33\)

Calculate:

\[

\text{Maximum dry unit weight} = \frac{2.65}{1 + 0.33} \times 9.81 = \frac{2.65}{1.33} \times 9.81 = 19.72 \, \text{kN/m³}

\]

\[

\text{Minimum dry unit weight} = \frac{2.65}{1 + 0.94} \times 9.81 = \frac{2.65}{1.94} \times 9.81 = 13.36 \, \text{kN/m³}

\]

Therefore, the maximum dry unit weight that the sand can have is 19.72 kN/m³, and the minimum dry unit weight that the sand can have is 13.36 kN/m³.