Makahanap ng mga solusyon at sagot sa lahat ng iyong katanungan sa IDNStudy.com. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Sagot :
Answer:
(a) To find the in-situ moist unit weight of the sand, we can use the following equation:
\[
\gamma = (1 + e) \times \frac{\gamma_w \times G}{1 + w}
\]
where:
\(\gamma\) = in-situ moist unit weight of the sand (kN/m³)
\(e\) = void ratio
\(\gamma_w\) = unit weight of water (9.81 kN/m³)
\(G\) = specific gravity of the sand
\(w\) = moisture content
Given:
\(e = 1 - \frac{D_r}{D_{r \text{ max}}} = 1 - \frac{60}{100} = 0.4\)
\(G = 2.65\)
\(w = 0.10\)
Substitute the values into the formula:
\[
\gamma = (1 + 0.4) \times \frac{9.81 \times 2.65}{1 + 0.1} = 1.4 \times \frac{9.81 \times 2.65}{1.1} = 21.09 \, \text{kN/m³}
\]
So, the in-situ moist unit weight of the sand is 21.09 kN/m³.
(b) To calculate the maximum and minimum dry unit weight, we use the formula:
\[
\text{Maximum dry unit weight} = \frac{G}{1 + e_{\text{min}}} \times \gamma_w
\]
\[
\text{Minimum dry unit weight} = \frac{G}{1 + e_{\text{max}}} \times \gamma_w
\]
Given:
\(e_{\text{max}} = 0.94\)
\(e_{\text{min}} = 0.33\)
Calculate:
\[
\text{Maximum dry unit weight} = \frac{2.65}{1 + 0.33} \times 9.81 = \frac{2.65}{1.33} \times 9.81 = 19.72 \, \text{kN/m³}
\]
\[
\text{Minimum dry unit weight} = \frac{2.65}{1 + 0.94} \times 9.81 = \frac{2.65}{1.94} \times 9.81 = 13.36 \, \text{kN/m³}
\]
Therefore, the maximum dry unit weight that the sand can have is 19.72 kN/m³, and the minimum dry unit weight that the sand can have is 13.36 kN/m³.
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang mas matibay na samahan. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.