Makakuha ng mga sagot sa iyong mga tanong mula sa komunidad ng IDNStudy.com. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.

D
) m DLS = 72, m. DUP
72, m. DUP = 2X + 15, and
m SUP= 7x - 6. Find m LDP and M. ULS.


Sagot :

Answer:

To solve for \( m \) (angle measures), let's interpret the given information and solve step by step:

Given:

- \( m \angle DLS = 72^\circ \)

- \( m \angle DUP = 72^\circ \)

- \( m \angle DUP = 2x + 15 \)

- \( m \angle SUP = 7x - 6 \)

First, equate \( m \angle DUP \) to \( 72^\circ \):

\[ 2x + 15 = 72 \]

Subtract 15 from both sides:

\[ 2x = 72 - 15 \]

\[ 2x = 57 \]

Divide both sides by 2 to solve for \( x \):

\[ x = \frac{57}{2} \]

\[ x = 28.5 \]

Now that we have \( x \), substitute it back into \( m \angle SUP \) to find \( m \angle SUP \):

\[ m \angle SUP = 7x - 6 \]

\[ m \angle SUP = 7(28.5) - 6 \]

\[ m \angle SUP = 199.5 - 6 \]

\[ m \angle SUP = 193.5 \]

So, \( m \angle SUP = 193.5^\circ \).

Next, substitute \( x \) into \( m \angle DUP \) to find \( m \angle DUP \):

\[ m \angle DUP = 2x + 15 \]

\[ m \angle DUP = 2(28.5) + 15 \]

\[ m \angle DUP = 57 + 15 \]

\[ m \angle DUP = 72 \]

So, \( m \angle DUP = 72^\circ \).

Therefore, the angle measures are:

- \( m \angle DLS = 72^\circ \)

- \( m \angle DUP = 72^\circ \)

- \( m \angle SUP = 193.5^\circ \)