Makakuha ng mga maaasahang sagot sa iyong mga tanong sa IDNStudy.com. Ang aming komunidad ay narito upang magbigay ng detalyadong sagot sa lahat ng iyong mga katanungan.

D
) m DLS = 72, m. DUP
72, m. DUP = 2X + 15, and
m SUP= 7x - 6. Find m LDP and M. ULS.


Sagot :

Answer:

To solve for \( m \) (angle measures), let's interpret the given information and solve step by step:

Given:

- \( m \angle DLS = 72^\circ \)

- \( m \angle DUP = 72^\circ \)

- \( m \angle DUP = 2x + 15 \)

- \( m \angle SUP = 7x - 6 \)

First, equate \( m \angle DUP \) to \( 72^\circ \):

\[ 2x + 15 = 72 \]

Subtract 15 from both sides:

\[ 2x = 72 - 15 \]

\[ 2x = 57 \]

Divide both sides by 2 to solve for \( x \):

\[ x = \frac{57}{2} \]

\[ x = 28.5 \]

Now that we have \( x \), substitute it back into \( m \angle SUP \) to find \( m \angle SUP \):

\[ m \angle SUP = 7x - 6 \]

\[ m \angle SUP = 7(28.5) - 6 \]

\[ m \angle SUP = 199.5 - 6 \]

\[ m \angle SUP = 193.5 \]

So, \( m \angle SUP = 193.5^\circ \).

Next, substitute \( x \) into \( m \angle DUP \) to find \( m \angle DUP \):

\[ m \angle DUP = 2x + 15 \]

\[ m \angle DUP = 2(28.5) + 15 \]

\[ m \angle DUP = 57 + 15 \]

\[ m \angle DUP = 72 \]

So, \( m \angle DUP = 72^\circ \).

Therefore, the angle measures are:

- \( m \angle DLS = 72^\circ \)

- \( m \angle DUP = 72^\circ \)

- \( m \angle SUP = 193.5^\circ \)