IDNStudy.com, ang perpektong platform para sa eksaktong at mabilis na mga sagot. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Use the hint to express the integral as shown below.
[tex]\begin{gathered} \int_{1}^{3} \frac{2^{\log_3 (x^3 + 2x^2)}}{x \cdot 4^{\log_3 \sqrt{x+2}}} \, dx = \int_{1}^{3} \frac{(x^3 + 2x^2)^{\log_3 2}}{x \cdot (\sqrt{x+2})^{\log_3 4}} \, dx \end{gathered}[/tex]
Remember that log₃(4) = 2log₃(2) and use the power of a power law of exponent to turn the latter integral as below.
[tex]\begin{gathered}\int_{1}^{3} \frac{(x^3 + 2x^2)^{\log_3 2}}{x \cdot (\sqrt{x+2})^{\log_3 4}} \, dx = \int_{1}^{3} \frac{1}{x}\left(\frac{x^3 + 2x^2}{(\sqrt{x+2})^{2}} \right)^{\log_3 2} \, dx \end{gathered}[/tex]
You can do the rest. I am sure you know how to simplify the fraction inside the parentheses. You should be able to get:
[tex]\begin{gathered} \int_{1}^{3} \frac{x^{2\log _3 2}}{x} \, dx = \int_{1}^{3} x^{\log _3 4-1}\, dx = \left.\frac{x^{\log _3 4}}{\log _3 4}\right|_{1}^{3}\end{gathered}[/tex]
This simplifies to 3/log₃(4) = log(27)/log(4).