IDNStudy.com, ang perpektong platform para sa malinaw at eksaktong mga sagot. Magtanong at makatanggap ng eksaktong sagot mula sa aming mga bihasang miyembro ng komunidad.
Use the hint to express the integral as shown below.
[tex]\begin{gathered} \int_{1}^{3} \frac{2^{\log_3 (x^3 + 2x^2)}}{x \cdot 4^{\log_3 \sqrt{x+2}}} \, dx = \int_{1}^{3} \frac{(x^3 + 2x^2)^{\log_3 2}}{x \cdot (\sqrt{x+2})^{\log_3 4}} \, dx \end{gathered}[/tex]
Remember that log₃(4) = 2log₃(2) and use the power of a power law of exponent to turn the latter integral as below.
[tex]\begin{gathered}\int_{1}^{3} \frac{(x^3 + 2x^2)^{\log_3 2}}{x \cdot (\sqrt{x+2})^{\log_3 4}} \, dx = \int_{1}^{3} \frac{1}{x}\left(\frac{x^3 + 2x^2}{(\sqrt{x+2})^{2}} \right)^{\log_3 2} \, dx \end{gathered}[/tex]
You can do the rest. I am sure you know how to simplify the fraction inside the parentheses. You should be able to get:
[tex]\begin{gathered} \int_{1}^{3} \frac{x^{2\log _3 2}}{x} \, dx = \int_{1}^{3} x^{\log _3 4-1}\, dx = \left.\frac{x^{\log _3 4}}{\log _3 4}\right|_{1}^{3}\end{gathered}[/tex]
This simplifies to 3/log₃(4) = log(27)/log(4).