IDNStudy.com, ang iyong pangunahing mapagkukunan para sa mga sagot ng eksperto. Magtanong ng anumang bagay at makatanggap ng agarang tugon mula sa aming dedikadong komunidad ng mga eksperto.

In group of 20 randomly selected horses, the mean is 1,000 and the standard deviation is 25, what is the standard deviation of the sampling distribution?​

Sagot :

Answer:

To find the standard deviation of the sampling distribution (also known as the standard error of the mean), you use the following formula:

\[ \text{Standard Error (SE)} = \frac{\sigma}{\sqrt{n}} \]

where:

- \(\sigma\) is the population standard deviation

- \(n\) is the sample size

Given:

- Population standard deviation (\(\sigma\)) = 25

- Sample size (\(n\)) = 20

Now, plug in the values:

\[ \text{SE} = \frac{25}{\sqrt{20}} \]

First, calculate \(\sqrt{20}\):

\[ \sqrt{20} \approx 4.47 \]

Then, divide 25 by 4.47:

\[ \text{SE} \approx \frac{25}{4.47} \approx 5.59 \]

So, the standard deviation of the sampling distribution is approximately 5.59.