Sumali sa IDNStudy.com at makakuha ng mabilis at maaasahang mga sagot. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

Give me 5 problem solving in Kelvin with solution and answer

Sagot :

Answer:

**Problem 1:**

The temperature of a substance is 25°C. What is the temperature in Kelvin (K)?

**Solution 1:**

To convert Celsius to Kelvin, use the formula:

\[ K = °C + 273.15 \]

Given \( °C = 25 \):

\[ K = 25 + 273.15 = 298.15 \, K \]

**Answer 1:**

The temperature is 298.15 Kelvin.

---

**Problem 2:**

A gas is initially at a temperature of 300 K. If its temperature increases by 50°C, what is the final temperature in Kelvin?

**Solution 2:**

Convert Celsius to Kelvin and then add to the initial Kelvin temperature.

\[ K_f = K_i + \Delta °C \]

\[ K_f = 300 + (50 + 273.15) \]

\[ K_f = 300 + 323.15 \]

\[ K_f = 623.

**Problem 3:**

A sample of gas occupies a volume of 2.50 liters at a temperature of 27°C. If the pressure remains constant, what will be the volume of the gas in Kelvin if the temperature is increased to 300 K?

**Solution 3:**

Convert Celsius to Kelvin for the initial temperature:

\[ T_{initial} = 27°C + 273.15 = 300.15 K \]

Now, using the combined gas law \( \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \):

\[ \frac{P \cdot 2.50}{300.15} = \frac{P \cdot V_2}{300} \]

** First

**Problem 4:**

A metal rod has a length of 50 cm at 20°C. If the rod expands uniformly, what will be its length in Kelvin if the temperature increases to 100°C? Assume a linear expansion coefficient of \(1.2 \times 10^{-5} \) per degree Celsius.

**Solution 4:**

First, convert the temperatures to Kelvin:

- Initial temperature, \(T_1 = 20°C + 273.15 = 293.15 K\)

- Final temperature, \(T_2 = 100°C + 273.15 = 373.15 K\)

Use the formula for linear thermal expansion:

\[ \Delta L = L_0 \alpha (T_2 - T_1) \]

Where:

- \( L_0 \) is the initial length of the rod (50 cm)

- \( \alpha \) is the linear expansion coefficient ( \(1.2 \times 10^{-5} \) per °C)

Calculate \( \Delta L \):

\[ \Delta L = 50 \times 10^{-2} \times (1.2 \times 10^{-5}) \times (373.15 - 293.15) \]

\[ \Delta L = 50 \times 10^{-2} \times 1.2 \times 10^{-5} \times 80 \]

\[ \Delta L = 0.048 \times 10^{-2} \]

\[ \Delta L = 0.48 \text{ cm} \]

Now, find the final length of the rod:

\[ L_{final} = L_0 + \Delta L \]

\[ L_{final} = 50 + 0.48 \]

\[ L_{final} = 50.48 \text{ cm} \]

**Answer 4:**

The length of the rod at 100°C (373.15 K) is 50.48 cm.

---

**Problem 5:**

A certain gas occupies a volume of 2.00 liters at 27°C and 1 atm pressure. If the volume remains constant, what will be the temperature in Kelvin if the pressure increases to 2 atm?

**Solution 5:**

Convert Celsius to Kelvin for the initial temperature:

\[ T_{initial} = 27°C + 273.15 = 300.15 K \]

Apply the ideal gas law, \( P_1 \cdot V_1 / T_1 = P_2 \cdot V_2 / T_2 \), where V