IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga eksaktong sagot. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Sagot :
Answer:
To determine the interest rate, we can use the compound interest formula:
\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \]
Where:
- \( A \) is the future value of the investment (3,875)
- \( P \) is the principal amount (2,050)
- \( r \) is the annual interest rate (to be found)
- \( n \) is the number of times interest is compounded per year (semi-annually, so \( n = 2 \))
- \( t \) is the time the money is invested for in years (4.5 years)
Plugging in the values:
\[ 3,875 = 2,050 \left(1 + \frac{r}{2}\right)^{2 \times 4.5} \]
This simplifies to:
\[ 3,875 = 2,050 \left(1 + \frac{r}{2}\right)^9 \]
Dividing both sides by 2,050:
\[ \left(1 + \frac{r}{2}\right)^9 = \frac{3,875}{2,050} \]
\[ \left(1 + \frac{r}{2}\right)^9 = 1.8902 \]
To solve for \( r \), take the 9th root of both sides:
\[ 1 + \frac{r}{2} = \left(1.8902\right)^{\frac{1}{9}} \]
Calculating the 9th root of 1.8902:
\[ 1 + \frac{r}{2} \approx 1.0747 \]
Subtracting 1 from both sides:
\[ \frac{r}{2} \approx 0.0747 \]
Multiplying both sides by 2:
\[ r \approx 0.1494 \]
Converting to a percentage and rounding to the nearest hundredth:
\[ r \approx 14.94\% \]
So, the annual interest rate is approximately 14.94%.
Pinahahalagahan namin ang bawat ambag mo. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtutulungan upang makamit ang ating mga layunin. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.