Suriin ang IDNStudy.com para sa mabilis na mga solusyon sa iyong mga problema. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.
Answer:
First, let's calculate the total momentum before the push:
\[
\text{Total momentum before} = (50 \, \text{kg} \times 2 \, \text{m/s}) + (75 \, \text{kg} \times 0 \, \text{m/s}) = 100 \, \text{kg m/s}
\]
Now, using the principle of conservation of momentum, we can set the total momentum before the push equal to the total momentum after the push:
\[
100 = 50 \times v_1 + 75 \times v_2
\]
Given that one skater moves at 2 m/s after the push, we have \( v_1 = 2 \, \text{m/s} \). Plugging this into the equation:
\[
100 = 50 \times 2 + 75 \times v_2
\]
\[
100 = 100 + 75 \times v_2
\]
\[
75 \times v_2 = 0
\]
Therefore, the velocity of the second skater after the push is 0 m/s. This makes sense intuitively, as the first skater pushes off the second skater and moves away, leaving the second skater stationary.