Tuklasin ang maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.
Sagot :
Answer:
To solve this problem, let's start by listing all possible samples of size 3 from the population \(\{2, 3, 5, 7\}\).
### Step 1: List all possible samples
We are drawing samples without replacement. The total number of possible samples of size 3 from a population of 4 elements is given by the combination formula \( \binom{4}{3} \), which is 4. The samples are:
1. \( \{2, 3, 5\} \)
2. \( \{2, 3, 7\} \)
3. \( \{2, 5, 7\} \)
4. \( \{3, 5, 7\} \)
### Step 2: Calculate the mean of each sample
- Mean of \( \{2, 3, 5\} \): \( \frac{2 + 3 + 5}{3} = 3.33 \)
- Mean of \( \{2, 3, 7\} \): \( \frac{2 + 3 + 7}{3} = 4.00 \)
- Mean of \( \{2, 5, 7\} \): \( \frac{2 + 5 + 7}{3} = 4.67 \)
- Mean of \( \{3, 5, 7\} \): \( \frac{3 + 5 + 7}{3} = 5.00 \)
### Step 3: Create the sampling probability distribution
Each sample has an equal probability of being chosen. Since there are 4 samples, the probability for each sample is \( \frac{1}{4} \).
| Sample | Sample Mean | Probability |
|--------------|-------------|-------------|
| \{2, 3, 5\} | 3.33 | 0.25 |
| \{2, 3, 7\} | 4.00 | 0.25 |
| \{2, 5, 7\} | 4.67 | 0.25 |
| \{3, 5, 7\} | 5.00 | 0.25 |
### Step 4: Find the mean of the sampling distribution
The mean of the sampling distribution (\( \mu_{\bar{X}} \)) is the expected value of the sample means:
\[ \mu_{\bar{X}} = \sum (\text{Sample Mean} \times \text{Probability}) \]
\[ \mu_{\bar{X}} = (3.33 \times 0.25) + (4.00 \times 0.25) + (4.67 \times 0.25) + (5.00 \times 0.25) \]
\[ \mu_{\bar{X}} = 0.8325 + 1.00 + 1.1675 + 1.25 \]
\[ \mu_{\bar{X}} = 4.25 \]
### Step 5: Find the variance of the sampling distribution
The variance of the sampling distribution (\( \sigma^2_{\bar{X}} \)) is given by:
\[ \sigma^2_{\bar{X}} = \sum ((\text{Sample Mean} - \mu_{\bar{X}})^2 \times \text{Probability}) \]
\[ \sigma^2_{\bar{X}} = ( (3.33 - 4.25)^2 \times 0.25 ) + ( (4.00 - 4.25)^2 \times 0.25 ) + ( (4.67 - 4.25)^2 \times 0.25 ) + ( (5.00 - 4.25)^2 \times 0.25 ) \]
\[ \sigma^2_{\bar{X}} = ( ( -0.92 )^2 \times 0.25 ) + ( ( -0.25 )^2 \times 0.25 ) + ( ( 0.42 )^2 \times 0.25 ) + ( ( 0.75 )^2 \times 0.25 ) \]
\[ \sigma^2_{\bar{X}} = ( 0.8464 \times 0.25 ) + ( 0.0625 \times 0.25 ) + ( 0.1764 \times 0.25 ) + ( 0.5625 \times 0.25 ) \]
\[ \sigma^2_{\bar{X}} = 0.2116 + 0.015625 + 0.0441 + 0.140625 \]
\[ \sigma^2_{\bar{X}} = 0.412 \]
### Step 6: Find the standard deviation of the sampling distribution
The standard deviation (\( \sigma_{\bar{X}} \)) is the square root of the variance:
\[ \sigma_{\bar{X}} = \sqrt{\sigma^2_{\bar{X}}} \]
\[ \sigma_{\bar{X}} = \sqrt{0.412} \]
\[ \sigma_{\bar{X}} \approx 0.64 \]
### Summary
- Mean of the sampling distribution: \( \mu_{\bar{X}} = 4.25 \)
- Variance of the sampling distribution: \( \sigma^2_{\bar{X}} = 0.412 \)
- Standard deviation of the sampling distribution: \( \sigma_{\bar{X}} \approx 0.64
Salamat sa iyong kontribusyon. Patuloy na magbahagi ng impormasyon at karanasan. Sama-sama tayong magtatagumpay sa ating layunin. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Salamat sa iyong pagbisita at sa muling pagkikita.