Makakuha ng maaasahan at pangkomunidad na mga sagot sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.

A population consists of the numbers 2, 3, 5, and 7. Let us list all possible samples of size 3 from this population. Create a sampling probability distribution and find its mean, variance, and standard deviation.

ASAP PO PLSSS


Sagot :

Answer:

To solve this problem, let's start by listing all possible samples of size 3 from the population \(\{2, 3, 5, 7\}\).

### Step 1: List all possible samples

We are drawing samples without replacement. The total number of possible samples of size 3 from a population of 4 elements is given by the combination formula \( \binom{4}{3} \), which is 4. The samples are:

1. \( \{2, 3, 5\} \)

2. \( \{2, 3, 7\} \)

3. \( \{2, 5, 7\} \)

4. \( \{3, 5, 7\} \)

### Step 2: Calculate the mean of each sample

- Mean of \( \{2, 3, 5\} \): \( \frac{2 + 3 + 5}{3} = 3.33 \)

- Mean of \( \{2, 3, 7\} \): \( \frac{2 + 3 + 7}{3} = 4.00 \)

- Mean of \( \{2, 5, 7\} \): \( \frac{2 + 5 + 7}{3} = 4.67 \)

- Mean of \( \{3, 5, 7\} \): \( \frac{3 + 5 + 7}{3} = 5.00 \)

### Step 3: Create the sampling probability distribution

Each sample has an equal probability of being chosen. Since there are 4 samples, the probability for each sample is \( \frac{1}{4} \).

| Sample | Sample Mean | Probability |

|--------------|-------------|-------------|

| \{2, 3, 5\} | 3.33 | 0.25 |

| \{2, 3, 7\} | 4.00 | 0.25 |

| \{2, 5, 7\} | 4.67 | 0.25 |

| \{3, 5, 7\} | 5.00 | 0.25 |

### Step 4: Find the mean of the sampling distribution

The mean of the sampling distribution (\( \mu_{\bar{X}} \)) is the expected value of the sample means:

\[ \mu_{\bar{X}} = \sum (\text{Sample Mean} \times \text{Probability}) \]

\[ \mu_{\bar{X}} = (3.33 \times 0.25) + (4.00 \times 0.25) + (4.67 \times 0.25) + (5.00 \times 0.25) \]

\[ \mu_{\bar{X}} = 0.8325 + 1.00 + 1.1675 + 1.25 \]

\[ \mu_{\bar{X}} = 4.25 \]

### Step 5: Find the variance of the sampling distribution

The variance of the sampling distribution (\( \sigma^2_{\bar{X}} \)) is given by:

\[ \sigma^2_{\bar{X}} = \sum ((\text{Sample Mean} - \mu_{\bar{X}})^2 \times \text{Probability}) \]

\[ \sigma^2_{\bar{X}} = ( (3.33 - 4.25)^2 \times 0.25 ) + ( (4.00 - 4.25)^2 \times 0.25 ) + ( (4.67 - 4.25)^2 \times 0.25 ) + ( (5.00 - 4.25)^2 \times 0.25 ) \]

\[ \sigma^2_{\bar{X}} = ( ( -0.92 )^2 \times 0.25 ) + ( ( -0.25 )^2 \times 0.25 ) + ( ( 0.42 )^2 \times 0.25 ) + ( ( 0.75 )^2 \times 0.25 ) \]

\[ \sigma^2_{\bar{X}} = ( 0.8464 \times 0.25 ) + ( 0.0625 \times 0.25 ) + ( 0.1764 \times 0.25 ) + ( 0.5625 \times 0.25 ) \]

\[ \sigma^2_{\bar{X}} = 0.2116 + 0.015625 + 0.0441 + 0.140625 \]

\[ \sigma^2_{\bar{X}} = 0.412 \]

### Step 6: Find the standard deviation of the sampling distribution

The standard deviation (\( \sigma_{\bar{X}} \)) is the square root of the variance:

\[ \sigma_{\bar{X}} = \sqrt{\sigma^2_{\bar{X}}} \]

\[ \sigma_{\bar{X}} = \sqrt{0.412} \]

\[ \sigma_{\bar{X}} \approx 0.64 \]

### Summary

- Mean of the sampling distribution: \( \mu_{\bar{X}} = 4.25 \)

- Variance of the sampling distribution: \( \sigma^2_{\bar{X}} = 0.412 \)

- Standard deviation of the sampling distribution: \( \sigma_{\bar{X}} \approx 0.64