IDNStudy.com, kung saan ang mga eksperto ay sumasagot sa iyong mga tanong. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.
Sagot :
Answer:
To solve this problem, let's start by listing all possible samples of size 3 from the population \(\{2, 3, 5, 7\}\).
### Step 1: List all possible samples
We are drawing samples without replacement. The total number of possible samples of size 3 from a population of 4 elements is given by the combination formula \( \binom{4}{3} \), which is 4. The samples are:
1. \( \{2, 3, 5\} \)
2. \( \{2, 3, 7\} \)
3. \( \{2, 5, 7\} \)
4. \( \{3, 5, 7\} \)
### Step 2: Calculate the mean of each sample
- Mean of \( \{2, 3, 5\} \): \( \frac{2 + 3 + 5}{3} = 3.33 \)
- Mean of \( \{2, 3, 7\} \): \( \frac{2 + 3 + 7}{3} = 4.00 \)
- Mean of \( \{2, 5, 7\} \): \( \frac{2 + 5 + 7}{3} = 4.67 \)
- Mean of \( \{3, 5, 7\} \): \( \frac{3 + 5 + 7}{3} = 5.00 \)
### Step 3: Create the sampling probability distribution
Each sample has an equal probability of being chosen. Since there are 4 samples, the probability for each sample is \( \frac{1}{4} \).
| Sample | Sample Mean | Probability |
|--------------|-------------|-------------|
| \{2, 3, 5\} | 3.33 | 0.25 |
| \{2, 3, 7\} | 4.00 | 0.25 |
| \{2, 5, 7\} | 4.67 | 0.25 |
| \{3, 5, 7\} | 5.00 | 0.25 |
### Step 4: Find the mean of the sampling distribution
The mean of the sampling distribution (\( \mu_{\bar{X}} \)) is the expected value of the sample means:
\[ \mu_{\bar{X}} = \sum (\text{Sample Mean} \times \text{Probability}) \]
\[ \mu_{\bar{X}} = (3.33 \times 0.25) + (4.00 \times 0.25) + (4.67 \times 0.25) + (5.00 \times 0.25) \]
\[ \mu_{\bar{X}} = 0.8325 + 1.00 + 1.1675 + 1.25 \]
\[ \mu_{\bar{X}} = 4.25 \]
### Step 5: Find the variance of the sampling distribution
The variance of the sampling distribution (\( \sigma^2_{\bar{X}} \)) is given by:
\[ \sigma^2_{\bar{X}} = \sum ((\text{Sample Mean} - \mu_{\bar{X}})^2 \times \text{Probability}) \]
\[ \sigma^2_{\bar{X}} = ( (3.33 - 4.25)^2 \times 0.25 ) + ( (4.00 - 4.25)^2 \times 0.25 ) + ( (4.67 - 4.25)^2 \times 0.25 ) + ( (5.00 - 4.25)^2 \times 0.25 ) \]
\[ \sigma^2_{\bar{X}} = ( ( -0.92 )^2 \times 0.25 ) + ( ( -0.25 )^2 \times 0.25 ) + ( ( 0.42 )^2 \times 0.25 ) + ( ( 0.75 )^2 \times 0.25 ) \]
\[ \sigma^2_{\bar{X}} = ( 0.8464 \times 0.25 ) + ( 0.0625 \times 0.25 ) + ( 0.1764 \times 0.25 ) + ( 0.5625 \times 0.25 ) \]
\[ \sigma^2_{\bar{X}} = 0.2116 + 0.015625 + 0.0441 + 0.140625 \]
\[ \sigma^2_{\bar{X}} = 0.412 \]
### Step 6: Find the standard deviation of the sampling distribution
The standard deviation (\( \sigma_{\bar{X}} \)) is the square root of the variance:
\[ \sigma_{\bar{X}} = \sqrt{\sigma^2_{\bar{X}}} \]
\[ \sigma_{\bar{X}} = \sqrt{0.412} \]
\[ \sigma_{\bar{X}} \approx 0.64 \]
### Summary
- Mean of the sampling distribution: \( \mu_{\bar{X}} = 4.25 \)
- Variance of the sampling distribution: \( \sigma^2_{\bar{X}} = 0.412 \)
- Standard deviation of the sampling distribution: \( \sigma_{\bar{X}} \approx 0.64
Maraming salamat sa iyong aktibong pakikilahok. Patuloy na magbahagi ng impormasyon at kasagutan. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Salamat sa pagpili sa IDNStudy.com. Umaasa kami na makita ka ulit para sa mas maraming solusyon.