Makahanap ng mga solusyon sa iyong mga problema sa tulong ng mga eksperto ng IDNStudy.com. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.

A line contains the points (8,3) and (-4,9). What is the equation of line

A. Y=2x+7

B. Y=-1/2x+7

C. Y=-2x+7

D. Y=1/2x+7.


Sagot :

Answer:

[tex]{\huge\color{yellow}{\boxed{\fcolorbox{yellow}{purple}{Pa Brainliest}}}}[/tex]

______________________________________

1. Calculate the slope (m):

The slope of a line passing through two points:

[tex] \((x_1, y_1)\) and \((x_2, y_2)\) is given by[/tex]

[tex] \[

m = \frac{y_2 - y_1}{x_2 - x_1}

\][/tex]

[tex]Plugging in the given points \((8, 3)\) and \((-4, 9)\):

\[

m = \frac{9 - 3}{-4 - 8} = \frac{6}{-12} = -\frac{1}{2}

\][/tex]

2. Use the point-slope form of the equation:

The point-slope form of a line's equation is:

[tex] \[

y - y_1 = m(x - x_1)

\]

[/tex]

[tex]Using the point \((8, 3)\) and the slope [/tex]

[tex]\(m = -\frac{1}{2}\):[/tex]

[tex]

\[

y - 3 = -\frac{1}{2}(x - 8)

\][/tex]

3. Simplify to the slope-intercept form

[tex](y = mx + b)[/tex]

Distribute the slope and simplify:

[tex]\[

y - 3 = -\frac{1}{2}x + 4

\][/tex]

Add 3 to both sides to solve for

[tex]\(y\):

\[

y = -\frac{1}{2}x + 4 + 3

\]

\[

y = -\frac{1}{2}x + 7

\][/tex]

So the equation of the line is

[tex]\(y = -\frac{1}{2}x + 7\),[/tex]

which corresponds to option B:

______________________________________

[tex]B. \(Y = -\frac{1}{2}x + 7\)[/tex]

______________________________________