Answered

IDNStudy.com, ang iyong destinasyon para sa mabilis at kaugnay na mga sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.

Directions: Find the exact values of the following expressions:
2. [tex] \: \frac{5 { \sin}^{2} {30}^{ \circ} + { \cos}^{2}{45}^{ \circ} + 4 { \tan}^{2} {60}^{ \circ} }{2 \sin {30}^{ \circ} \cos {45}^{ \circ} + \tan {45}^{ \circ} } [/tex]​


Sagot :

[tex]\underline{\underline{\large{\red{\mathcal{✒GIVEN:}}}}}[/tex]

[tex]\bullet \: \: \rm{ \frac{5 { \sin}^{2} {30}^{ \circ} + { \cos}^{2}{45}^{ \circ} + 4 { \tan}^{2} {60}^{ \circ} }{2 \sin {30}^{ \circ} \cos {45}^{ \circ} + \tan {45}^{ \circ} }}[/tex]

[tex]\underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}}[/tex]

Find the exact value.

[tex]\underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}}[/tex]

Remember the six trigonometric ratios for [tex]\tt{\purple{special \: angles}}[/tex] [tex]\tt{{45}^{ \circ} , {30}^{ \circ} \: and \: {60}^{ \circ}}[/tex]:

[tex]\small{\boxed{ \bm{{ \red{ \sin {30}^{ \circ} = \dfrac{1}{2} }}}}}[/tex]

[tex]\small{\boxed{ \bm{{ \red{ \cos {45}^{ \circ} = \dfrac{ \sqrt{2} }{2} }}}}}[/tex]

[tex]\small{\boxed{ \bm{{ \red{ \tan {60}^{ \circ} = \sqrt{3} }}}}}[/tex]

[tex]\small{\boxed{ \bm{{ \red{ \tan {45}^{ \circ} = \sqrt{1} }}}}}[/tex]

Now, we substitute those values:

[tex]\small{\tt{ \frac{5( \frac{1}{2} {)}^{2} + ( \frac{ \sqrt{2} }{2} {)}^{2} + 4( \sqrt{3} {)}^{2} }{2 (\frac{1}{2}) ( \frac{ \sqrt{2} }{2} ) + 1} = \frac{ \frac{5}{4} + \frac{2}{4} + 12 }{ \frac{ \sqrt{2} }{2} + 1} }}[/tex]

[tex]\tt{ \frac{ \frac{7}{4} + 12}{ \frac{ \sqrt{2} + 2}{2} } = \frac{ \frac{7 + 48}{4} }{ \frac{ \sqrt{2} + 2}{2} } \div \frac{ \sqrt{2} + 2}{2} }[/tex]

[tex]\tt{ \dfrac{55(2)}{4( \sqrt{2} + 2)}}[/tex]

Simplify:

[tex]\large{\tt{\purple{ \dfrac{55}{2 \sqrt{2} + 4} }}}[/tex]

Final Answer:

[tex]\tt{\therefore}[/tex] The exact value is [tex]\large{\rm{\purple{ \dfrac{55}{2 \sqrt{2} + 4} }}}[/tex].