Magtanong at makakuha ng eksaktong mga sagot sa IDNStudy.com. Ang aming komunidad ay narito upang magbigay ng detalyadong sagot sa lahat ng iyong mga katanungan.

(2m+4)^2+(2m+2)^2-4 divisible by 8

Sagot :

Step-by-step explanation:

To determine if the given expression is divisible by 8, we can simplify it first and then check if the result is divisible by 8.

The given expression is: (2m+4)^2+(2m+2)^2-4

Let's simplify each term separately:

(2m+4)^2 = (2m+4)(2m+4) = 4m^2 + 16m + 16

(2m+2)^2 = (2m+2)(2m+2) = 4m^2 + 8m + 4

Now, let's add these two simplified terms:

(4m^2 + 16m + 16) + (4m^2 + 8m + 4) = 8m^2 + 24m + 20

Finally, let's subtract 4 from the sum:

8m^2 + 24m + 20 - 4 = 8m^2 + 24m + 16

Now we need to check if this result is divisible by 8. If it is, then the original expression is also divisible by 8.

To be divisible by 8, a number must be divisible by both 2 and 4. Let's check for both:

1. Divisibility by 2: The expression is divisible by 2 if the last digit is even (0, 2, 4, 6, or 8). In this case, the last digit is 6, which is even, so the expression is divisible by 2.

2. Divisibility by 4: A number is divisible by 4 if the last two digits form a number that is divisible by 4. In this case, the last two digits are 16, which is divisible by 4. Therefore, the expression is divisible by 4.

Since the expression is divisible by both 2 and 4, it is divisible by 8.

Ang iyong presensya ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbabahagi ng iyong nalalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. Bumalik ka sa IDNStudy.com para sa maasahang mga sagot sa iyong mga katanungan. Salamat sa iyong tiwala.