Makakuha ng mabilis at pangkomunidad na mga sagot sa IDNStudy.com. Magtanong at makatanggap ng maaasahang sagot mula sa aming dedikadong komunidad ng mga eksperto.
Sagot :
Answer:
To find the radius of the solid aluminum sphere that balances a solid iron sphere of radius 2.00 cm on an equal-arm balance, we need to calculate the mass of the iron sphere and then determine the radius of the aluminum sphere that has the same mass.
Given:
- Mass of iron sphere = 7.86 x 10³ kg
- Radius of iron sphere = 2.00 cm = 0.02 m
First, let's calculate the mass of the iron sphere using the formula for the volume of a sphere:
Volume of a sphere = (4/3) * π * r³
Where:
- r is the radius of the sphere
Mass of iron sphere = Density of iron * Volume of iron sphere
The density of iron is approximately 7.86 x 10³ kg/m³. Plugging in the values:
Mass of iron sphere = (7.86 x 10³ kg/m³) * ((4/3) * π * (0.02 m)³)
Mass of iron sphere = 7.86 x 10³ kg
Now, we need to find the radius of the aluminum sphere that has the same mass. The density of aluminum is approximately 2.70 x 10³ kg/m³. We can use the same formula to calculate the volume of the aluminum sphere:
Volume of aluminum sphere = (4/3) * π * r³
Mass of aluminum sphere = Density of aluminum * Volume of aluminum sphere
Now, we can set up an equation to find the radius of the aluminum sphere:
(7.86 x 10³ kg) = (2.70 x 10³ kg/m³) * ((4/3) * π * r³)
Solving for r³:
r³ = (7.86 x 10³ kg) / (2.70 x 10³ kg/m³)
r³ = 2.91 x 10⁰ m³
Taking the cube root of both sides to find the radius of the aluminum sphere:
r = (2.91 x 10⁰ m³)^(1/3)
r ≈ 1.70 m
Therefore, the radius of the solid aluminum sphere that balances a solid iron sphere of radius 2.00 cm on an equal-arm balance is approximately 1.70 m.
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Huwag kalimutang bumalik upang magtanong at magbahagi ng iyong karanasan. Ang iyong kaalaman ay mahalaga sa ating komunidad. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.