Makahanap ng mga solusyon at sagot sa lahat ng iyong katanungan sa IDNStudy.com. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.
Sagot :
[tex]\underline{\underline{\large{\red{\mathcal{✒GIVEN:}}}}}[/tex]
[tex]\bullet \: \: \rm{a. \: 4 {x}^{2} - 21 {x}^{3} + 18 {x}^{2} + 19x - 6 = 0 }[/tex]
[tex]\bullet \: \: \rm{b. \: 2 {x}^{3} - {3x}^{2} - 10x - 4 = 0}[/tex]
[tex]\bullet \: \: \rm{c. \: {x}^{4} - {4x}^{2} + 3 = 0}[/tex]
[tex]\underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}}[/tex]
Hi, Brainly User. I will help you solve the following equation. We need to use the Rational Root Theorem to find the zeros of the equations.
[tex]\underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}}[/tex]
[tex]\sf{A.}[/tex]
[tex]\bm{ 4 {x}^{2} - 21 {x}^{3} + 18 {x}^{2} + 19x - 6 = 0 }[/tex]
The trailing coefficient is -6.
Factors:
[tex]\tt{\pm 1, \pm 2, \pm 3, \pm 6}[/tex]
The trailing coefficient is -6.
Factors:
[tex]\tt{ \pm 1, \pm 2, \pm 3, \pm 6}[/tex]
[tex]\tt{ \pm 1, \pm 2, \pm 4}[/tex]
These are the possible values for q.
All possible values of [tex]\rm{\dfrac{p}{q}}[/tex]:
[tex] \small{\tt{\pm \frac{1}{1} , \pm \frac{1}{2} , \pm \frac{1}{4} , \pm \frac{2}{1} , \pm \frac{2}{2} , \pm \frac{2}{4} , \pm \frac{3}{1} , \pm \frac{3}{2} , \pm \frac{3}{4} , \pm \frac{6}{1} , \pm \frac{6}{2} , }}[/tex] [tex]\small{\tt{\pm \frac{6}{4} }}[/tex]
Simplifying and removing the duplicates. These are the possible rational roots:
[tex]\tt{ \pm 1, \pm \frac{1}{2} , \pm \frac{1}{4} , \pm 2, \pm 3, \pm \frac{3}{2} , \pm \frac{3}{4} , \pm 6}[/tex]
Now, check the possible roots: if a is a root of the polynomial, the remainder from the division of the polynomial by [tex]\rm{ (x - a) }[/tex] should equal 0. By checking all possible roots, we find the actual rational roots are:
[tex]\large{\tt{\purple{2, - \dfrac{3}{4} }}}[/tex]
[tex]\sf{B.}[/tex]
[tex]\bm{ 2 {x}^{3} - {3x}^{2} - 10x - 4 = 0}[/tex]
The trailing coefficient is -4.
Factors:
[tex]\tt{ \pm 1, \pm 2, \pm 4}[/tex]
These are the possible values for q.
All possible values of [tex]\rm{\dfrac{p}{q}}[/tex]:
[tex]\tt{ \pm \frac{1}{1} , \pm \frac{1}{2} , \pm \frac{2}{1} , \pm \frac{2}{2} , \pm \frac{4}{1} , \pm \frac{4}{2} }[/tex]
Simplifying and removing the duplicates. These are the possible rational roots:
[tex]\tt{ \pm1, \pm \frac{1}{2} , \pm 2, \pm4}[/tex]
Now, check the possible roots: if a is a root of the polynomial, the remainder from the division of the polynomial by [tex]\rm{ (x - a) }[/tex] should equal 0. By checking all possible roots, we find the actual rational roots are:
[tex]\large{\tt{\purple{ - \dfrac{1}{2} }}}[/tex]
[tex]\sf{C.}[/tex]
[tex]\bm{ {x}^{4} - {4x}^{2} + 3 = 0}[/tex]
The trailing coefficient is 3.
Factors:
[tex]\tt{\pm 1, \pm 3}[/tex]
These are the possible values for p.
The leading coefficient is 1.
Factors:
[tex]\tt{\pm1}[/tex]
These are the possible values for q.
All possible values of [tex]\rm{\dfrac{p}{q}}[/tex]:
[tex]\tt{ \pm \frac{1}{1} , \pm \frac{3}{1} }[/tex]
Simplifying. These are the possible rational roots:
[tex]\tt{\pm 1, \pm 3}[/tex]
Now, check the possible roots: if a is a root of the polynomial, the remainder from the division of the polynomial by [tex]\rm{ (x - a) }[/tex] should equal 0. By checking all possible roots, we find the actual rational roots are:
[tex]\large{\tt{\purple{ 1, -1}}}[/tex]
Final Answer:
》 A.
[tex]\large{\rm{\purple{2, - \dfrac{3}{4} }}}[/tex]
》 B.
[tex]\large{\rm{\purple{ - \dfrac{1}{2} }}}[/tex]
》 C.
[tex]\large{\rm{\purple{ 1, -1}}}[/tex]
Ang iyong kontribusyon ay napakahalaga sa amin. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtatagumpay sa ating layunin. Ang IDNStudy.com ay laging nandito upang tumulong sa iyo. Bumalik ka palagi para sa mga sagot sa iyong mga katanungan.