Magtanong at makakuha ng malinaw na mga sagot sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

please do number 14.

hint: use cubic
(I'm lazy to solve it, haha)

I got permission with teacher anyway, so it's a bonus. All I need is the solution + answer tho.


Please Do Number 14hint Use CubicIm Lazy To Solve It HahaI Got Permission With Teacher Anyway So Its A Bonus All I Need Is The Solution Answer Tho class=

Sagot :

[tex]\underline{\underline{\large{\red{\mathcal{✒GIVEN:}}}}}[/tex]

[tex]\bullet \: \: \rm{a. \: 4 {x}^{2} - 21 {x}^{3} + 18 {x}^{2} + 19x - 6 = 0 }[/tex]

[tex]\bullet \: \: \rm{b. \: 2 {x}^{3} - {3x}^{2} - 10x - 4 = 0}[/tex]

[tex]\bullet \: \: \rm{c. \: {x}^{4} - {4x}^{2} + 3 = 0}[/tex]

[tex]\underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}}[/tex]

Hi, Brainly User. I will help you solve the following equation. We need to use the Rational Root Theorem to find the zeros of the equations.

[tex]\underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}}[/tex]

[tex]\sf{A.}[/tex]

[tex]\bm{ 4 {x}^{2} - 21 {x}^{3} + 18 {x}^{2} + 19x - 6 = 0 }[/tex]

The trailing coefficient is -6.

Factors:

[tex]\tt{\pm 1, \pm 2, \pm 3, \pm 6}[/tex]

The trailing coefficient is -6.

Factors:

[tex]\tt{ \pm 1, \pm 2, \pm 3, \pm 6}[/tex]

[tex]\tt{ \pm 1, \pm 2, \pm 4}[/tex]

These are the possible values for q.

All possible values of [tex]\rm{\dfrac{p}{q}}[/tex]:

[tex] \small{\tt{\pm \frac{1}{1} , \pm \frac{1}{2} , \pm \frac{1}{4} , \pm \frac{2}{1} , \pm \frac{2}{2} , \pm \frac{2}{4} , \pm \frac{3}{1} , \pm \frac{3}{2} , \pm \frac{3}{4} , \pm \frac{6}{1} , \pm \frac{6}{2} , }}[/tex] [tex]\small{\tt{\pm \frac{6}{4} }}[/tex]

Simplifying and removing the duplicates. These are the possible rational roots:

[tex]\tt{ \pm 1, \pm \frac{1}{2} , \pm \frac{1}{4} , \pm 2, \pm 3, \pm \frac{3}{2} , \pm \frac{3}{4} , \pm 6}[/tex]

Now, check the possible roots: if a is a root of the polynomial, the remainder from the division of the polynomial by [tex]\rm{ (x - a) }[/tex] should equal 0. By checking all possible roots, we find the actual rational roots are:

[tex]\large{\tt{\purple{2, - \dfrac{3}{4} }}}[/tex]

[tex]\sf{B.}[/tex]

[tex]\bm{ 2 {x}^{3} - {3x}^{2} - 10x - 4 = 0}[/tex]

The trailing coefficient is -4.

Factors:

[tex]\tt{ \pm 1, \pm 2, \pm 4}[/tex]

These are the possible values for q.

All possible values of [tex]\rm{\dfrac{p}{q}}[/tex]:

[tex]\tt{ \pm \frac{1}{1} , \pm \frac{1}{2} , \pm \frac{2}{1} , \pm \frac{2}{2} , \pm \frac{4}{1} , \pm \frac{4}{2} }[/tex]

Simplifying and removing the duplicates. These are the possible rational roots:

[tex]\tt{ \pm1, \pm \frac{1}{2} , \pm 2, \pm4}[/tex]

Now, check the possible roots: if a is a root of the polynomial, the remainder from the division of the polynomial by [tex]\rm{ (x - a) }[/tex] should equal 0. By checking all possible roots, we find the actual rational roots are:

[tex]\large{\tt{\purple{ - \dfrac{1}{2} }}}[/tex]

[tex]\sf{C.}[/tex]

[tex]\bm{ {x}^{4} - {4x}^{2} + 3 = 0}[/tex]

The trailing coefficient is 3.

Factors:

[tex]\tt{\pm 1, \pm 3}[/tex]

These are the possible values for p.

The leading coefficient is 1.

Factors:

[tex]\tt{\pm1}[/tex]

These are the possible values for q.

All possible values of [tex]\rm{\dfrac{p}{q}}[/tex]:

[tex]\tt{ \pm \frac{1}{1} , \pm \frac{3}{1} }[/tex]

Simplifying. These are the possible rational roots:

[tex]\tt{\pm 1, \pm 3}[/tex]

Now, check the possible roots: if a is a root of the polynomial, the remainder from the division of the polynomial by [tex]\rm{ (x - a) }[/tex] should equal 0. By checking all possible roots, we find the actual rational roots are:

[tex]\large{\tt{\purple{ 1, -1}}}[/tex]

Final Answer:

》 A.

[tex]\large{\rm{\purple{2, - \dfrac{3}{4} }}}[/tex]

》 B.

[tex]\large{\rm{\purple{ - \dfrac{1}{2} }}}[/tex]

》 C.

[tex]\large{\rm{\purple{ 1, -1}}}[/tex]