IDNStudy.com, ang iyong gabay para sa maaasahan at eksaktong mga sagot. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

find the area of the trapezium in terms of x

Find The Area Of The Trapezium In Terms Of X class=

Sagot :

Answer:

To find the area of trapezium \(ABCD\), we can use the formula for the area of a trapezium:

\[ \text{Area} = \frac{1}{2} (a + b) h \]

where \(a\) and \(b\) are the lengths of the two parallel sides (the bases), and \(h\) is the height of the trapezium.

In the trapezium \(ABCD\), we have the following:

- Top base \(AB = 13 \text{ cm}\)

- Bottom base \(DC = 17x + 12 \text{ cm}\)

- Height \(h = 5 \text{ cm}\)

So, the area of the trapezium is:

\[ \text{Area} = \frac{1}{2} (13 + (17x + 12)) \times 5 \]

Simplify the expression inside the parentheses:

\[ 13 + 17x + 12 = 17x + 25 \]

Now, substitute back into the area formula:

\[ \text{Area} = \frac{1}{2} (17x + 25) \times 5 \]

Multiply:

\[ \text{Area} = \frac{1}{2} \times 5 \times (17x + 25) \]

\[ \text{Area} = \frac{5}{2} (17x + 25) \]

So, the area of the trapezium in terms of \(x\) is:

\[ \text{Area} = \frac{85x + 125}{2} \]

\[ \text{Area} = 42.5x + 62.5 \text{ cm}^2 \]

Thus, the simplified area of the trapezium \(ABCD\) in terms of \