Sumali sa IDNStudy.com at tuklasin ang komunidad ng pagbabahagi ng kaalaman. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.

find the area of the trapezium in terms of x

Find The Area Of The Trapezium In Terms Of X class=

Sagot :

Answer:

To find the area of trapezium \(ABCD\), we can use the formula for the area of a trapezium:

\[ \text{Area} = \frac{1}{2} (a + b) h \]

where \(a\) and \(b\) are the lengths of the two parallel sides (the bases), and \(h\) is the height of the trapezium.

In the trapezium \(ABCD\), we have the following:

- Top base \(AB = 13 \text{ cm}\)

- Bottom base \(DC = 17x + 12 \text{ cm}\)

- Height \(h = 5 \text{ cm}\)

So, the area of the trapezium is:

\[ \text{Area} = \frac{1}{2} (13 + (17x + 12)) \times 5 \]

Simplify the expression inside the parentheses:

\[ 13 + 17x + 12 = 17x + 25 \]

Now, substitute back into the area formula:

\[ \text{Area} = \frac{1}{2} (17x + 25) \times 5 \]

Multiply:

\[ \text{Area} = \frac{1}{2} \times 5 \times (17x + 25) \]

\[ \text{Area} = \frac{5}{2} (17x + 25) \]

So, the area of the trapezium in terms of \(x\) is:

\[ \text{Area} = \frac{85x + 125}{2} \]

\[ \text{Area} = 42.5x + 62.5 \text{ cm}^2 \]

Thus, the simplified area of the trapezium \(ABCD\) in terms of \