IDNStudy.com, ang perpektong platform para sa mabilis at eksaktong mga sagot. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Answer:
To determine the highest integer among seven consecutive odd integers whose sum is 441, we first define the sequence. Let the middle integer of the sequence be ( x ). Since we are dealing with seven consecutive odd integers, the sequence can be written as:
[x-6, x-4, x-2, x, x+2, x+4, x+6]
Next, we sum these integers:
[(x-6) + (x-4) + (x-2) + x + (x+2) + (x+4) + (x+6)]
Combining the terms, we get:
[(x-6) + (x-4) + (x-2) + x + (x+2) + (x+4) + (x+6) = 7x]
Given that the sum is 441, we set up the equation:
[7x = 441]
Solving for \( x \):
[x = \frac{441}{7} = 63]
Now, since \( x \) is the middle integer in the sequence, the highest integer is:
[x + 6 = 63 + 6 = 69]
Therefore, the highest integer is D. 69