Makahanap ng mga solusyon sa iyong mga problema gamit ang IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.

5. Simplify (x2n + 2y)2 (x3n)0

6. Simplify x2y(2x3 + 3x2y - 3xy2 + 2y3)

7. Factor (x2 - 34x – 72) by grouping.

8. Simplify the product of(x - y)(x2 + xy + y2)

9. Simplify the product of (x2 - 2y)(x3 + 3y2)

10. Factor (5x – 2y)2 - (x + 3y)2


Sagot :

SIMPLIFYING

[tex]\normalsize{\blue{\overline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}}}[/tex]

5.) Simplify (x2n + 2y)2 (x3n)0

[tex]\rm{Interpreted \ Question: \underline{(x^{2} n + 2y)^{2} (x^{3n} )^{0} }}[/tex]

Any number raised to the power of 0 equals to 1. Hence, (x^{3n})⁰ = 1.

  • [tex]= (x^{2} n + 2y)^{2} (x^{3n} )^{0}[/tex]
  • [tex]= (x^{2} n + 2y)^{2} \times 1[/tex]
  • [tex]= \underline{\green{(x^{2} n + 2y)^{2}}}[/tex]

Hence, the simplified form is (x²n + 2y)²

[tex]\\[/tex]

6.) Simplify x2y(2x3 + 3x2y - 3xy2 + 2y3)

Distribute x²y to all terms in the parentheses

  • [tex]x^{2} y(2x^{3} + 3x^{2} y - 3xy^{2} + 2y^{3} )[/tex]
  • [tex]{=x^{2} y \times 2x^{3} + x^{2} y \times 3x^{2} y - x^{2} y \times 3xy^{2} + x^{2} y \times 2y^{3} }[/tex]
  • [tex]{=2x^{3+2}y + 3x^{2+2}y^{2} - 3x^{2+1}y^{1+2} + 2x^{2} y^{1+3} }[/tex]
  • [tex]\underline{\green{=2x^{5}y + 3x^{4}y^{2} - 3x^{3}y^{3}+ 2x^{2}y^{4} }}[/tex]

Hence, the simplified form is [tex]{2x^{5}y + 3x^{4}y^{2} - 3x^{3}y^{3}+ 2x^{2}y^{4} }[/tex].

[tex]\\[/tex]

7.) Factor (x2 - 34x – 72) by grouping.

To begin factoring this, we first need to find two numbers that multiply to -72 and numbers that add to -34. These numbers would be -36 and 2. (-36 × 2 = -72, -36 + 2 = -34.) Rewrite the expression using -36x and 2x.

  • [tex]= (x^{2} - 34x - 72)[/tex]
  • [tex]= x^{2} - 36x + 2x - 72[/tex]
  • [tex]= (x^{2} - 36x) + (2x - 72)[/tex]
  • [tex]= x(x-36) + 2(x - 36)[/tex]
  • [tex]\underline{\green{= (x-36) (x +2)}}[/tex]

Hence, the factored form is (x - 36)(x + 2)

[tex]\\[/tex]

8.) Simplify the product of(x - y)(x2 + xy + y2)

  • [tex]= (x-y)(x^{2} +xy+y^{2} )[/tex]
  • [tex]{= x(x^{2} +xy+y^{2} ) - y(x^{2} +xy+y^{2} )}[/tex]
  • [tex]{= x^{3} +x^{2} y+xy^{2} - yx^{2} -y^{2} x-y^{3}}[/tex]
  • [tex]{= x^{3} +x^{2} y+xy^{2} - x^{2}y -xy^{2}-y^{3}}[/tex]
  • [tex]\underline{\green{= x^{3} -y^{3}}}[/tex]

Hence, the factored form is x³-y³.

[tex]\\[/tex]

9.) Simplify the product of (x2 - 2y)(x3 + 3y2)

  • [tex]= (x^{2} - 2y)(x3 + 3y^{2} )[/tex]
  • [tex]{= x^{2}(x^{3} + 3y^{2} ) - 2y(x^{3} + 3y^{2} )}[/tex]
  • [tex]{= x^{2} \times x^{3} + x^{2} \times 3y^{2} - 2y \times x^{3} - 2y \times 3y^{2}}[/tex]
  • [tex]\underline{\green{= x^{5}+3x^{2} y^{2} - 2x^{3}y - 6y^{3}}}[/tex]

Hence, the simplified form is [tex]{x^{5}+3x^{2} y^{2} - 2x^{3}y - 6y^{3}}[/tex].

[tex]\\[/tex]

10.) Factor (5x – 2y)2 - (x + 3y)2

Using the formula (a²-b²) = (a-b)(a+b), where a = (5x-2y), and b = (x+3y).

  • [tex]= (5x - 2y)^{2} - (x + 3y)^{2}[/tex]
  • [tex]{= [(5x - 2y) - (x + 3y)] [(5x - 2y) - (x + 3y)]}[/tex]
  • [tex]{= (5x - 2y - x - 3y)(5x - 2y+x + 3y)}[/tex]
  • [tex]\underline{\green{{= (4x - 5y)(6x +y)}}}[/tex]

Hence, the factored form is (4x-5y)(6x+y).

[tex]\normalsize{\blue{\overline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}}}[/tex]

[tex]\sf{Swipe \: right \rightarrow \: if \: you \: are \: using \: the\: brainly \: app}[/tex]

[tex]\large{\boxed{\tt{\blue{06/09/2024}}}}[/tex]