Magtanong at makakuha ng eksaktong mga sagot sa IDNStudy.com. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

X+Y=W
Z= W-1
X= (Y-2)2
W+X= 67
W-X= 24-1
Then,
(Z+W-Y+X)×4÷2=


Sagot :

Answer:

To solve this problem, we need to substitute the given equations into the final equation and simplify it.

Given equations:

X + Y = W

Z = W - 1

X = (Y - 2)^2

W + X = 67

W - X = 24 - 1

Substituting the equations into the final equation, we get:

(Z + W - Y + X) × 4 ÷ 2 =?

First, let's substitute the values of X and W from the given equations:

X = (Y - 2)^2

W + X = 67

W - X = 24 - 1

Substituting X into the first equation, we get:

W + (Y - 2)^2 = 67

W - (Y - 2)^2 = 24 - 1

Simplifying the equations, we get:

W + (Y - 2)^2 = 67

W - (Y - 2)^2 = 23

Now, let's substitute the values of W and X into the final equation:

(Z + W - Y + X) × 4 ÷ 2 =?

Substituting W and X, we get:

(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 4 ÷ 2 =?

Simplifying the equation, we get:

(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 4 ÷ 2 =?

This simplifies to:

(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 2 =?

Therefore, the simplified form of the final equation is:

(Z + (W + (Y - 2)^2) - Y + (Y - 2)^2) × 2 =?