IDNStudy.com, ang iyong mapagkakatiwalaang mapagkukunan para sa eksaktong at maaasahang mga sagot. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.
Sagot :
Permutations
[tex]__________________________[/tex]
Given:
- n = 10
- r = 3
Required:
- the number of ways can 1st, 2nd and 3rd places be decided
Equation:
[tex]\sf _n P_r = \dfrac{n!}{(n-r)!}[/tex]
where,
- n is the total number of objects
- r is the number of objects selected
Solution:
[tex]\sf _{10} P_3 = \dfrac{10!}{(10-3)!}[/tex]
[tex]\sf _{10} P_3 = \dfrac{10!}{7!}[/tex]
[tex]\sf _{10} P_3 = \dfrac{3628800}{5040}[/tex]
[tex]\sf _{10} P_3 = 720[/tex]
Answer:
[tex]\sf _{10} P_3 = 720[/tex]
∴ There are 720 ways that the 1st, 2nd and 3rd places can be decided.
Answer:
To determine in how many different ways the first, second, and third places can be decided in a horse race with ten horses, we can use the concept of permutations.
The number of ways in which we can select the first, second, and third places out of ten horses is given by the permutation formula for selecting r objects out of n distinct objects, which is:
P(n, r) = n! / (n - r)!
In this case, we want to select 3 horses from 10 for the first, second, and third places respectively. So, applying the formula:
P(10, 3) = 10! / (10 - 3)!
= 10! / 7!
Calculating the factorial values:
10! = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1
= 3628800
7! = 7 x 6 x 5 x 4 x 3 x 2 x 1
= 5040
Now, substitute these values back:
P(10, 3) = 3628800 / 5040
= 720
Therefore, the number of different ways in which the first, second, and third places can be decided in a race with ten horses is 720 ways.
꒰⑅ᵕ༚ᵕ꒱˖
Salamat sa iyong kontribusyon. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.