Makakuha ng mga maaasahang sagot sa iyong mga tanong sa IDNStudy.com. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.

RENT is a rectangle. Its diagonal meet at O. Then the value of 'x' if OR = 2x + 4 and OT = 3x + 1 is _______.

A. 2
B. 3
C. 4
D. 5​


Sagot :

Answer:

[tex]\begin{gathered}\large\qquad\qquad\boxed{ \bold{ \: \: \:(b) \: \: 3 \: \: \: }} \\ \end{gathered} [/tex]

Step-by-step explanation:

Given that, RENT is a rectangle such that diagonals RN and ET meet at O.

We know, In rectangle, diagonals are equal and bisects each other.

So, using this property of rectangle, we have:

[tex]\begin{gathered}\sf \implies \:RN = ET \\ \end{gathered} [/tex]

[tex]\begin{gathered}\sf \implies \:\dfrac{1}{2} RN = \dfrac{1}{2} ET \\ \end{gathered}[/tex]

[tex]\begin{gathered}\sf \implies \:OR = OT \\ \end{gathered} [/tex]

[tex]\begin{gathered}\sf \implies \:2x + 4 = 3x + 1 \\ \end{gathered} [/tex]

[tex]\begin{gathered}\sf \implies \:2x - 3x = 1 - 4 \\ \end{gathered} [/tex]

[tex]\begin{gathered}\sf \implies \: - x = - 3 \\ \end{gathered} [/tex]

[tex]\begin{gathered}\sf\implies \bold{ \: x = 3 }\\ \end{gathered} [/tex]

[tex] \\ [/tex]

[tex] \qquad \qquad \large \underline{ \sf{ \blue{ \pmb{Additional \: Information : }}}} \\ [/tex]

Sum of all interior angles of a convex polygon of n sides is:

[tex]\begin{gathered}\sf \:\qquad \hookrightarrow \: \boxed{ \sf{ \: \:(2n - 4) \times 90\degree \: \: }} \\ \end{gathered} [/tex]

For a regular polygon of n sides, we have a relationship:

[tex]\begin{gathered}\qquad \hookrightarrow \: \boxed{ \sf{ \: \:Exterior \: angle \: = \: \frac{360\degree}{n} \: \: }} \\ \end{gathered} [/tex]

[tex]\begin{gathered}\qquad \hookrightarrow \: \boxed{ \sf{ \: \:n \: = \: \frac{360\degree}{Exterior \: angle} \: \: }} \\ \end{gathered} [/tex]

The smallest interior angle of a regular polygon is 60°.

The largest exterior angle of a regular polygon is 120°.

[tex] \sf{ \pmb{In \: parallelogram : }} \\ [/tex]

[tex] \qquad \bull \: \: \sf{Opposite \: sides \: are \: equal.} \\ [/tex]

[tex] \sf \qquad \bull \: \: {Opposite \: angles \: are \: equal.} \\ [/tex]

[tex] \qquad \sf \bull \: \: {Diagonals \: bisect \: each \: other.} \\ [/tex]

[tex] \qquad \sf \bull \: \: {Sum \: of \: adjacent \: angles \: is \: 180 \degree.} \\ [/tex]

View image Amaranthaceae