Sumali sa IDNStudy.com at makakuha ng mga sagot sa iyong mga tanong. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.

mx + 3y = 7 and 2x - 3y = 5 are perpendiculars. What should be the value of m? 

Sagot :

First step: express the equation into the form y = (slope)x + b; y is alone on one side

2x-3y = 5 <----- subract 2x to both sides
-3y = -2x + 5; divide both sides by -3
y = (-2/3)x - 5/3 <--- this is the first equation

mx + 3y = 7 <---- subtract mx to both sides
3y = -mx + 3 <----- divide both sides by 3
y = (-m/3)x + 1 <---- this is the second equation
Now determine the slope of equations 1 and 2.
[the slope is anything that is multiplied to x]
Equation 1: -2/3 <---slope1
Equation 2: -m/3 <----slope2
Now if two line are perpendicular then the slopes of the two equations are negative reciprocals.
Example, if the slope of line1 is 3/5 then the slope of line2 that will make it parallel to line1 is -5/3 <---- notice that you flip the top and bottom numbers and multiplies it to negative 1

Second step get the negative reciprocal of one the slopes and equate it to the slope of the other: -RECIPROCAL  slope 1 = slope2
the negative reciprocal of -2/3 is 3/2
then equate it to -m/3
3/2 = -m/3 <---- multiply both sides by 3
9/2 = -m <------ multiply by -1
-9/2 = m <----- flip the equation
m = -9/2 <---- this is the value of m

Salamat sa iyong pagsali sa aming komunidad. Magpatuloy sa pagtatanong at pagsagot sa mga katanungan. Sama-sama tayong magtatayo ng isang lugar na puno ng kaalaman at pagtutulungan. Bawat tanong ay may sagot sa IDNStudy.com. Salamat at sa muling pagkikita para sa mas maraming solusyon.