IDNStudy.com, ang iyong platform ng sanggunian para sa eksaktong mga sagot. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad na may kaalaman.
Sagot :
SOLUTION:
Step 1: Summarize the concentrations using the ICE table.
[tex]\begin{array}{lccccccc} & \text{CH}_3\text{NH}_2(aq) & + & \text{H}_2\text{O}(l) & \rightleftharpoons & \text{CH}_3\text{NH}_3^+(aq) & + & \text{OH}^-(aq) \\ \text{Initial} \: (M): & 0.072 & & & & 0 & & 0 \\ \text{Change} \: (M): & -x & & & & +x & & +x \\ \hline \text{Equilibrium} \: (M): & 0.072-x & & & & x & & x \\ \end{array}[/tex]
Step 2: Write the Kb expression.
[tex]K_{\text{b}} = \dfrac{[\text{CH}_3\text{NH}_3^+][\text{OH}^-]}{[\text{CH}_3\text{NH}_2]}[/tex]
Step 3: Substitute the given values to the Kb expression.
[tex]\begin{aligned} 4.4 \times 10^{-4} & = \frac{(x)(x)}{0.10 - x} \\ 4.4 \times 10^{-4} & = \frac{x^2}{0.072 - x} \end{aligned}[/tex]
Step 4: Apply approximation method to solve for the hydroxide ion concentration at equilibrium.
Note: 0.072 - x ≈ 0.072
[tex]\begin{aligned} 4.4 \times 10^{-4} & = \frac{x^2}{0.072} \\ x^2 & = (4.4 \times 10^{-4})(0.072) \\ x^2 & = 3.168 \times 10^{-5} \\ x & = \sqrt{3.168 \times 10^{-5}} \\ x & = 5.6285 \times 10^{-3} \: M\end{aligned}[/tex]
Testing the approximation
[tex]\begin{aligned} \text{value} & = \frac{[\text{OH}^-]}{[\text{CH}_3\text{NH}_2]_{\text{initial}}} \times 100\% \\ & = \frac{5.6285 \times 10^{-3} \: M}{0.072 \: M} \times 100\% \\ & = 7.8\% \end{aligned}[/tex]
Since the value is greater than 5%, the approximation is invalid. We must use quadratic formula. Therefore,
[tex]\begin{aligned} 4.4 \times 10^{-4} & = \frac{x^2}{0.072 - x} \\ x^2 & = (4.4 \times 10^{-4})(0.072 - x) \\ x^2 & = 3.168 \times 10^{-5} - 4.4 \times 10^{-4}x \\ x^2 + 4.4 \times 10^{-4}x - 3.168 \times 10^{-5} & = 0 \end{aligned}[/tex]
[tex]\begin{aligned} a = 1 \quad b = 4.4 \times 10^{-4} \quad c = -3.168 \times 10^{-5} \end{aligned}[/tex]
[tex]\begin{aligned} x & = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ x & = \frac{-4.4 \times 10^{-4} \pm \sqrt{(4.4 \times 10^{-4})^2 - 4(1)(-3.168 \times 10^{-5})}}{2(1)} \\ x & = 5.4 \times 10^{-3} \: M \: (accepted) \\ x & = -5.85 \times 10^{-3} \: M \: (rejected) \end{aligned}[/tex]
It follows that the value of OH⁻ concentration is
[tex][\text{OH}^-] = x = 5.4 \times 10^{-3} \: M[/tex]
Step 5: Calculate the pOH and pH of the solution.
• For pOH
[tex]\begin{aligned} \text{pOH} & = -\text{log} \: [\text{OH}^-] \\ & = -\text{log} \: (5.4 \times 10^{-3}) \\ & = \boxed{2.27} \end{aligned}[/tex]
• For pH
[tex]\begin{aligned} \text{pH} & = 14 - \text{pOH} \\ & = 14 - 2.27 \\ & = \boxed{11.73} \end{aligned}[/tex]
Hence, the pOH and pH of a 0.072-M methylamine solution are 2.27 and 11.73, respectively.
[tex]\\[/tex]
#CarryOnLearning
Salamat sa iyong presensya. Patuloy na magtanong at magbahagi ng iyong mga ideya. Ang iyong kaalaman ay mahalaga sa ating komunidad. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.