Suriin ang malawak na saklaw ng mga paksa at makakuha ng mga sagot sa IDNStudy.com. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

On a clean sheet of paper, compute the 3rd and 5th Fibonacci numbers using Binet's formula.

On A Clean Sheet Of Paper Compute The 3rd And 5th Fibonacci Numbers Using Binets Formula class=

Sagot :

Binet's Formula

Given in 1943 by Jacques Philippe Marie Binet. An explicit formula used to find the nth term of the Fibonacci sequence. The formula is f_n = \frac{1}{\sqrt{5} }

5

1

[\frac{1 + \sqrt{5} }{2}

2

1+

5

ⁿ - [\frac{1 - \sqrt{5} }{2}

2

1−

5

ⁿ. n is the number of terms in the Fibonacci sequence. This is derived from the general form of quadratic equation.

Solutions:

a. Given: Binet's Formula: f_n = \frac{1}{\sqrt{5} }

5

1

[\frac{1 + \sqrt{5} }{2}

2

1+

5

ⁿ - [\frac{1 - \sqrt{5} }{2}

2

1−

5

n = 29

f_n = \frac{1}{\sqrt{5} }

5

1

[\frac{1 + \sqrt{5} }{2}

2

1+

5

ⁿ - [\frac{1 - \sqrt{5} }{2}

2

1−

5

Find the 29th term of the Fibonacci sequence.

f₂₉ = \frac{1}{\sqrt{5} }

5

1

[\frac{1 + \sqrt{5} }{2}

2

1+

5

²⁹ - [\frac{1 - \sqrt{5} }{2}

2

1−

5

²⁹

f₂₉ = \frac{1}{2.2360679775}

2.2360679775

1

[\frac{1 + 2.2360670775}{2}

2

1+2.2360670775

²⁹ - [\frac{1 - 2.2360679775}{2}

2

1−2.2360679775

f₂₉ = .447213595[\frac{3.2360679775}{2}

2

3.2360679775

²⁹ - [\frac{-1.2360679775}{2}

2

−1.2360679775

²⁹

f₂₉ = .447213595 [(1.61803399)²⁹ - (-.618033989)²⁹]

f₂₉ = (.447213595)(1,149,851.6190675)

f₂₉ = 514,229

Find the 30th term of the Fibonacci sequence.

f₃₀ = \frac{1}{\sqrt{5} }

5

1

[\frac{1 + \sqrt{5} }{2}

2

1+

5

³⁰ - [\frac{1 - \sqrt{5} }{2}

2

1−

5

³⁰

f₃₀ = \frac{1}{2.2360679775}

2.2360679775

1

[\frac{1 + 2.2360670775}{2}

2

1+2.2360670775

³⁰ - [\frac{1 - 2.2360679775}{2}

2

1−2.2360679775

³⁰

f₃₀ = .447213595[\frac{3.2360679775}{2}

2

3.2360679775

³⁰ - [\frac{-1.2360679775}{2}

2

−1.2360679775

³⁰

f₃₀ = .447213595 [(1.61803399)³⁰ - (-.618033989)³⁰]

f₃₀ = (.447213595)[1860498.04 - (-.0000000537490506)]

f₃₀ = (.447213595)(1860498.04)

f₃₀ = 832,040

b. Find the 31st term of the Fibonacci sequence.

31st term = 29th term + 30th term

f₃₁ = f₂₉ + f₃₀

f₃₁ = 514,229 + 832,040

f₃₁ = 1,346,269

What is the Binet's Formula: https://brainly.ph/question/4959269

#LearnWithBrainly