Answered

IDNStudy.com, kung saan ang mga eksperto at komunidad ay nagtutulungan para sagutin ang iyong mga tanong. Alamin ang mga detalyadong sagot mula sa mga bihasang miyembro ng aming komunidad na sumasaklaw sa iba't ibang paksa para sa lahat ng iyong pangangailangan.

a rectangle whose dimensions are 12 in. and 15 in. is circumscribed about a circle. What is the circumference of the circle? What is the area outside the rectangle but inside the circle?

Sagot :

Find the diagonal of the rectangle using Pythagorean Theorem:

Diagonal = [tex] \sqrt{(15) ^{2}+(12) ^{2} } [/tex]
               = [tex] \sqrt{225 + 144} [/tex]
               = [tex] \sqrt{369} [/tex]
               = [tex] \sqrt{9(41)} [/tex]
               = 3 [tex] \sqrt{41} [/tex]  or 3(6.40) 
               = 19.2 inches

Solve for Circumference:
C = 2 π r

Radius (r)of circumscribing circle of rectangle:
= diagonal ÷ 2
= 19.2 inches ÷ 2
= 9.6 inches

Circumference = 2 (3.14) (9.6 inches)
   = 60.23 inches

ANSWER: CIRCUMFERENCE of circle = 60.23 inches

Area of Circumscribing circle:
= π r²
= (3.14) (9.6 inches)²
= (3.14) (92.16 inches²)
= 289.38 inches²

Area of rectangle:
= Length × Width
= 15 inches × 12 inches
= 180 inches²

Area outside the rectangle but inside the circumscribing circle:
= Area of circle - area of rectangle
= 289.38 inches² - 180 inches²
= 109.38 inches²

ANSWER: 109.38 inches² is the area outside the rectangle but within the circumscribing circle.