Makakuha ng mga sagot ng eksperto sa iyong mga tanong sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at maaasahang mga sagot, anuman ang kahirapan ng iyong mga katanungan.
Sagot :
This is an example of a problem involving mutually exclusive events, which are events that cannot occur at the same time.
See a more detailed explanation about mutually exclusive events at this link: https://brainly.ph/question/279424
Hence, we use the formula P(A or B) = P(A) + P(B).
a. The probability of wearing a blue shirt is [tex] \frac{5}{15}= \frac{1}{3} [/tex]
b. The probability of wearing a red shirt is [tex] \frac{4}{15} [/tex]
Therefore, the probability that Rhian will wear a blue or a red shirt is [tex] \frac{5}{15}+ \frac{4}{15}= \frac{9}{15}= \frac{3}{5}[/tex] or 0.6.
See a more detailed explanation about mutually exclusive events at this link: https://brainly.ph/question/279424
Hence, we use the formula P(A or B) = P(A) + P(B).
a. The probability of wearing a blue shirt is [tex] \frac{5}{15}= \frac{1}{3} [/tex]
b. The probability of wearing a red shirt is [tex] \frac{4}{15} [/tex]
Therefore, the probability that Rhian will wear a blue or a red shirt is [tex] \frac{5}{15}+ \frac{4}{15}= \frac{9}{15}= \frac{3}{5}[/tex] or 0.6.
Salamat sa iyong presensya. Magpatuloy sa pagtatanong at pagbabahagi ng iyong nalalaman. Sama-sama tayong lumikha ng isang mas matibay na samahan. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Salamat sa iyong pagbisita at sa muling pagkikita.