IDNStudy.com, ang iyong mapagkukunan para sa maaasahan at pangkomunidad na mga sagot. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.

In radicals,what is the square root of 3 multiplied by the cube root of 18?

Sagot :

Step 1:  Convert the radicals to to fractional exponent:

[tex] \sqrt{3} = 3 ^{ \frac{1}{2} } [/tex]

[tex] \sqrt[3]{18} [/tex] = [tex] 18^{ \frac{1}{3} } [/tex]

Step 2:  Convert the fractional exponents to similar fractions:

LCD of 1/2 and 1/3 is 6

1/2 = 3/6   ⇒ [tex]3 \frac{1}{2} [/tex] = [tex]3 ^{ \frac{3}{6} } [/tex]

1/3 = 2/6   ⇒ [tex]18 ^{ \frac{1}{3} } [/tex]  = [tex]18 ^{ \frac{2}{6} } [/tex]

Step 3:  Convert to radicals:

[tex] 3^{ \frac{3}{6} } = \sqrt[6]{3 ^{3} } [/tex]

[tex]18 ^{ \frac{2}{6} } = \sqrt[6]{18 ^{2} } [/tex]

Step 4:  Multiply:

[tex]( \sqrt[6]{3 ^{3} } )( \sqrt[6]{18 ^{2} }) [/tex]

[tex]( \sqrt[6]{ 3^{3} })( \sqrt[6]{18 ^{2} } )= ( \sqrt[6]{ 3^{3} } )( \sqrt[6]{(3 ^{3})(12) } [/tex]

= [tex] \sqrt[6]{(3 ^{6})(12) } [/tex]

ANSWER = [tex] 3\sqrt[6]{12} [/tex]