IDNStudy.com, ang platform na nag-uugnay ng mga tanong sa mga solusyon. Ang aming komunidad ay narito upang magbigay ng detalyadong sagot sa lahat ng iyong mga katanungan.

find the volume and the total area of the largest cube of wood that can be cut from a log of circular cross section whose radius is 12.7 in.

Sagot :

Let a be the edge of the cube.  

To solve for the edge, find the diagonal of the square given the radius (12.7 inches) of the circular cross section.

Diagonal of the square = Diameter of the cirle (2 × radius)
Diagonal = 2 (12.7 in)
               = 25.4 inches

Solve for edge (a) of cube, using Pythagorean Theorem:
diagonal = hyptonuse = 25.4 inches

(25.4 in)² = a² + a²

2a² = (25.4 in)²

[tex] \sqrt{2a ^{2} } [/tex] = [tex] \sqrt{(25.4) ^{2} } [/tex]

a = [tex]( \frac{25.4 in}{ \sqrt{2} })( \frac{ \sqrt{2} }{ \sqrt{2} } ) [/tex]

a = [tex] \frac{25.4in \sqrt{2} }{2} [/tex]

a = [tex]12.7 \sqrt{2} [/tex]  in

VOLUME OF INSCRIBED CUBE: 
Volume = a³
Volume = (12.7 [tex] \sqrt{2} [/tex])³
Volume = 2,048.38 (2)  [tex] \sqrt{2} [/tex] in³
Volume ≈ 4,096.76 (1.4142) in³
Volume ≈ 5,793.64 in³

SURFACE AREA OF CUBE:
SA = 6 (a)²
SA = 6 [tex](12.7 \sqrt{2} ) ^{2} [/tex] in²
SA = 6 (161.29 × 2) in²
SA = 6 (322.58) in²
Surface Area  1,935.48 in²