Makakuha ng detalyadong mga sagot sa lahat ng iyong katanungan sa IDNStudy.com. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

find the volume and the total area of the largest cube of wood that can be cut from a log of circular cross section whose radius is 12.7 in.

Sagot :

Let a be the edge of the cube.  

To solve for the edge, find the diagonal of the square given the radius (12.7 inches) of the circular cross section.

Diagonal of the square = Diameter of the cirle (2 × radius)
Diagonal = 2 (12.7 in)
               = 25.4 inches

Solve for edge (a) of cube, using Pythagorean Theorem:
diagonal = hyptonuse = 25.4 inches

(25.4 in)² = a² + a²

2a² = (25.4 in)²

[tex] \sqrt{2a ^{2} } [/tex] = [tex] \sqrt{(25.4) ^{2} } [/tex]

a = [tex]( \frac{25.4 in}{ \sqrt{2} })( \frac{ \sqrt{2} }{ \sqrt{2} } ) [/tex]

a = [tex] \frac{25.4in \sqrt{2} }{2} [/tex]

a = [tex]12.7 \sqrt{2} [/tex]  in

VOLUME OF INSCRIBED CUBE: 
Volume = a³
Volume = (12.7 [tex] \sqrt{2} [/tex])³
Volume = 2,048.38 (2)  [tex] \sqrt{2} [/tex] in³
Volume ≈ 4,096.76 (1.4142) in³
Volume ≈ 5,793.64 in³

SURFACE AREA OF CUBE:
SA = 6 (a)²
SA = 6 [tex](12.7 \sqrt{2} ) ^{2} [/tex] in²
SA = 6 (161.29 × 2) in²
SA = 6 (322.58) in²
Surface Area  1,935.48 in²



Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.