IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mabilis na sagot. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Sagot :
Expressing it mathematically becomes
[tex]L \propto \frac{1}{f} [/tex]
As it varies, we change into equal sign and proportionality constant [tex]k[/tex]:
[tex]L= k(\frac{1}{f}) [/tex]
Since [tex]L = 10 in[/tex] and [tex]f = 512 cycles[/tex] are the first conditions, the second one has [tex]L = 8 in[/tex] with the unknown frequency. Because k is constant, equate the two conditions into one expression as
[tex]L_1f_1=L_2f_2[/tex]
For [tex]f_2[/tex],
[tex]f_2= \frac{L_1f_1}{L_2}= \frac{(10in)(512cycles)}{8in}=640cycles [/tex]
[tex]L \propto \frac{1}{f} [/tex]
As it varies, we change into equal sign and proportionality constant [tex]k[/tex]:
[tex]L= k(\frac{1}{f}) [/tex]
Since [tex]L = 10 in[/tex] and [tex]f = 512 cycles[/tex] are the first conditions, the second one has [tex]L = 8 in[/tex] with the unknown frequency. Because k is constant, equate the two conditions into one expression as
[tex]L_1f_1=L_2f_2[/tex]
For [tex]f_2[/tex],
[tex]f_2= \frac{L_1f_1}{L_2}= \frac{(10in)(512cycles)}{8in}=640cycles [/tex]
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Huwag kalimutang bumalik upang magtanong at magbahagi ng iyong karanasan. Sama-sama tayong magpapaunlad ng kaalaman para sa lahat. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.