Makakuha ng maaasahan at pangkomunidad na mga sagot sa IDNStudy.com. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Calculating Weighted Average: In a History course, a student's grade is composed of papers (40%), tests (40%) and a final exam (20%). The student has earned a 90 value on all papers and 80 value on all tests. What is the minimum score the student needs to earn on the final exam to achieve an overall grade of a B+ (87.0)?

Sagot :

Papers = 90 (0.40)
Tests = 80 (0.40)
Final exam minimum score required = x (0.20)  
Average = 87
For the minimum score, linear inequality is involved in the problem. Use symbol ≥ .

Weighted Average Equation:

[(90)(0.40)]  + [(80)(0.40)] + [(0.20) (x)] ≥  87

36 + 32 +  0.20x ≥ 87

68 + 0.20x ≥ 87

0.20x ≥ 87 - 68

0.20x ≥ 19

0.20x ÷ 0.20   ≥  19 ÷ 0.20

x ≥ 95          
Solution = {x/x ≥ 95}  ;  interval = [95, ⁺∞)


ANSWER: The student must earn a minimum value, or score of at least, 95 in the final exam to get a B⁺ equivalent to 87.

Check:

36 + 32 + (0.20)(95) ≥ 87
68 + 19 ≥ 87
87 ≥ 87