IDNStudy.com, ang perpektong platform para sa eksaktong at mabilis na mga sagot. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.
Sagot :
First, find it's perimeter then divide it by 2.
s = (a + b + c) ÷ 2
Then to find the area:
A = √s(s-a)(s-b)(s-c)
That's Heron's formula for area of triangle ☺
Heron's Formula for area of triangle given sides a, b, and c; and NOT base and height:
Area = [tex] \sqrt{s(s-a)(s-b)(s-c)} [/tex]
Where s is the semi-perimeter (half of the perimeter) of the triangle.
s = [tex] \frac{1}{2} [/tex] (a + b + c)
How to use Heron's formula?
Given the sides a, b, and c of a triangle, solve its semi-perimeter first, then find the area.
Example:
The triangle has sides 3 cm, 4 cm and 5 cm.
Semi-perimeter:
s = [tex] \frac{1}{2} [/tex](3 + 4 + 5)
s = ¹/₂ (12)
s = 6
Solve for area given s (6 cm) and sides a=2 cm; b=4cm; c=5 cm
Area = [tex] \sqrt{(6cm)(6cm-3 cm)(6cm-4cm)(6cm-5cm)} [/tex]
Area = [tex] \sqrt{(6cm)(3cm)(2cm)(1cm)} [/tex]
Area = [tex] \sqrt{36cm ^{4} } [/tex]
Area = 6 cm²
-----------------------------
In finding the radius of the circumscribing circle of a triangle, the formula in solving for radius is derived from Heron's formula. You may check the problem I solved her in brainly at link: brainly.ph/question/275941
Area = [tex] \sqrt{s(s-a)(s-b)(s-c)} [/tex]
Where s is the semi-perimeter (half of the perimeter) of the triangle.
s = [tex] \frac{1}{2} [/tex] (a + b + c)
How to use Heron's formula?
Given the sides a, b, and c of a triangle, solve its semi-perimeter first, then find the area.
Example:
The triangle has sides 3 cm, 4 cm and 5 cm.
Semi-perimeter:
s = [tex] \frac{1}{2} [/tex](3 + 4 + 5)
s = ¹/₂ (12)
s = 6
Solve for area given s (6 cm) and sides a=2 cm; b=4cm; c=5 cm
Area = [tex] \sqrt{(6cm)(6cm-3 cm)(6cm-4cm)(6cm-5cm)} [/tex]
Area = [tex] \sqrt{(6cm)(3cm)(2cm)(1cm)} [/tex]
Area = [tex] \sqrt{36cm ^{4} } [/tex]
Area = 6 cm²
-----------------------------
In finding the radius of the circumscribing circle of a triangle, the formula in solving for radius is derived from Heron's formula. You may check the problem I solved her in brainly at link: brainly.ph/question/275941
Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbabahagi ng iyong nalalaman. Sama-sama tayong lumikha ng isang mas matibay na samahan. Bawat tanong ay may sagot sa IDNStudy.com. Salamat at sa muling pagkikita para sa mas maraming solusyon.