Kayyyyidn
Answered

Makakuha ng detalyadong mga sagot sa lahat ng iyong tanong sa IDNStudy.com. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

find the distance in inches between two vertices of a cube that are farthest from each other if an edge measure 10 inches

Sagot :

The cube has 6 lateral square faces.  The corners are all right angles.  Therefore, use Pythagorean Theorem to solve for hypotenuse/ diagonals/distance between the vertices farthest from each other.

Step 1:  Find the hypotenuse/diagonal of the square (lateral face) given the edge which measures 10 inches.

Diagonal = [tex] \sqrt{(side) ^{2}+(side) ^{2} } [/tex]

Diagonal = [tex] \sqrt{(10) ^{2}+(10) ^{2} } [/tex]

Diagonal = [tex] \sqrt{100 + 100} [/tex]

Diagonal = [tex] \sqrt{200} [/tex]  =  [tex] \sqrt{(100)(2)} [/tex]

Diagonal = [tex]10 \sqrt{2} [/tex]  inches

Step 2:  Find the distance between the vertices farthest from each other,
Edge = 10 inches
Diagonal of the lateral face/square = [tex]10 \sqrt{2} [/tex]  inches

Distance =[tex] \sqrt{(10) ^{2}+(10 \sqrt{2}) ^{2} } [/tex]

Distance = [tex] \sqrt{100 +(100)( \sqrt{4}) } [/tex]

Distance = [tex] \sqrt{100 + 100(2)} [/tex]

Distance = [tex] \sqrt{100 + 200} [/tex]

Distance = [tex] \sqrt{300} [/tex]

Distance = [tex] \sqrt{(100)(3)} [/tex]

Distance = [tex]10 \sqrt{3} [/tex]  inches

Distance ≈ (10) (1.732) inches

Distance ≈ 17. 32 inches


ANSWER:  The distance between the vertices farthest from each other in a cube is [tex]10 \sqrt{3} [/tex] inches or approx. 17.32 inches.

Please click image below for my illustration with solution.
View image Аноним