Kayyyyidn
Answered

Makahanap ng mabilis na mga solusyon sa iyong mga problema sa IDNStudy.com. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.

find the distance in inches between two vertices of a cube that are farthest from each other if an edge measure 10 inches

Sagot :

The cube has 6 lateral square faces.  The corners are all right angles.  Therefore, use Pythagorean Theorem to solve for hypotenuse/ diagonals/distance between the vertices farthest from each other.

Step 1:  Find the hypotenuse/diagonal of the square (lateral face) given the edge which measures 10 inches.

Diagonal = [tex] \sqrt{(side) ^{2}+(side) ^{2} } [/tex]

Diagonal = [tex] \sqrt{(10) ^{2}+(10) ^{2} } [/tex]

Diagonal = [tex] \sqrt{100 + 100} [/tex]

Diagonal = [tex] \sqrt{200} [/tex]  =  [tex] \sqrt{(100)(2)} [/tex]

Diagonal = [tex]10 \sqrt{2} [/tex]  inches

Step 2:  Find the distance between the vertices farthest from each other,
Edge = 10 inches
Diagonal of the lateral face/square = [tex]10 \sqrt{2} [/tex]  inches

Distance =[tex] \sqrt{(10) ^{2}+(10 \sqrt{2}) ^{2} } [/tex]

Distance = [tex] \sqrt{100 +(100)( \sqrt{4}) } [/tex]

Distance = [tex] \sqrt{100 + 100(2)} [/tex]

Distance = [tex] \sqrt{100 + 200} [/tex]

Distance = [tex] \sqrt{300} [/tex]

Distance = [tex] \sqrt{(100)(3)} [/tex]

Distance = [tex]10 \sqrt{3} [/tex]  inches

Distance ≈ (10) (1.732) inches

Distance ≈ 17. 32 inches


ANSWER:  The distance between the vertices farthest from each other in a cube is [tex]10 \sqrt{3} [/tex] inches or approx. 17.32 inches.

Please click image below for my illustration with solution.
View image Аноним