Maligayang pagdating sa IDNStudy.com, ang iyong platform para sa lahat ng iyong katanungan! Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.
Sagot :
There are two ways to find the radius of circumscribing circle of a triangle (triangle inside the circle and whose three vertices are on the circle).
Choose one that you can easily remember:
Method A:
1.) Find the semi-perimeter (s) of the triangle, where a, b, and c are the sides
of the triangle:
s = (a + b+ c) ÷ 2
2.) Solve for the radius (r) given the semi-perimeter (s) of the triangle, and the
the sides a, b, and c:
r = [tex] \frac{abc}{4 \sqrt{s(s-a)(s-b)(s-c)} } [/tex]
Solution using Method A:
a = 80 cm; b = 100 cm; c = 140 cm
Find the triangle's semi-perimeter: (half of the triangle's perimeter)
s = (80 + 100 + 140) ÷ 2
s = 320 cm ÷ 2
s = 160 cm
Solve for radius given the semi-perimeter (160 cm) and sides a, b, c:
r = (abc) ÷ [tex]4 \sqrt{s(s-a)(s-b)(s-c)} [/tex]
r = [tex] \frac{(80cm)(100cm)(140cm)}{4 \sqrt{140cm(160cm-80cm)(160cm-100cm)(160cm-140cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{(160cm)(80cm)(60cm)(20cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{15,360,000cm ^{4} } } [/tex]
r =[tex] \frac{1,120,000cm ^{3} }{4 (3,919.18cm ^{2}) } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{15,676.72cm ^{2} } [/tex]
r ≈ 71.44 cm
ANSWER: The radius of circumscribing circle is 71.44 cm.
Method B:
r = [tex] \frac{abc}{ \sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-a)} } [/tex]
Substitute the given measurements of sides a, b and, c, then evaluate.
The result is the same.
Choose one that you can easily remember:
Method A:
1.) Find the semi-perimeter (s) of the triangle, where a, b, and c are the sides
of the triangle:
s = (a + b+ c) ÷ 2
2.) Solve for the radius (r) given the semi-perimeter (s) of the triangle, and the
the sides a, b, and c:
r = [tex] \frac{abc}{4 \sqrt{s(s-a)(s-b)(s-c)} } [/tex]
Solution using Method A:
a = 80 cm; b = 100 cm; c = 140 cm
Find the triangle's semi-perimeter: (half of the triangle's perimeter)
s = (80 + 100 + 140) ÷ 2
s = 320 cm ÷ 2
s = 160 cm
Solve for radius given the semi-perimeter (160 cm) and sides a, b, c:
r = (abc) ÷ [tex]4 \sqrt{s(s-a)(s-b)(s-c)} [/tex]
r = [tex] \frac{(80cm)(100cm)(140cm)}{4 \sqrt{140cm(160cm-80cm)(160cm-100cm)(160cm-140cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{(160cm)(80cm)(60cm)(20cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{15,360,000cm ^{4} } } [/tex]
r =[tex] \frac{1,120,000cm ^{3} }{4 (3,919.18cm ^{2}) } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{15,676.72cm ^{2} } [/tex]
r ≈ 71.44 cm
ANSWER: The radius of circumscribing circle is 71.44 cm.
Method B:
r = [tex] \frac{abc}{ \sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-a)} } [/tex]
Substitute the given measurements of sides a, b and, c, then evaluate.
The result is the same.
Salamat sa iyong kontribusyon. Patuloy na magbahagi ng iyong karanasan at kaalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. Ang IDNStudy.com ay nangako na sasagutin ang lahat ng iyong mga tanong. Salamat at bisitahin kami palagi.