Suriin ang IDNStudy.com para sa mabilis at kaugnay na mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.
Sagot :
There are two ways to find the radius of circumscribing circle of a triangle (triangle inside the circle and whose three vertices are on the circle).
Choose one that you can easily remember:
Method A:
1.) Find the semi-perimeter (s) of the triangle, where a, b, and c are the sides
of the triangle:
s = (a + b+ c) ÷ 2
2.) Solve for the radius (r) given the semi-perimeter (s) of the triangle, and the
the sides a, b, and c:
r = [tex] \frac{abc}{4 \sqrt{s(s-a)(s-b)(s-c)} } [/tex]
Solution using Method A:
a = 80 cm; b = 100 cm; c = 140 cm
Find the triangle's semi-perimeter: (half of the triangle's perimeter)
s = (80 + 100 + 140) ÷ 2
s = 320 cm ÷ 2
s = 160 cm
Solve for radius given the semi-perimeter (160 cm) and sides a, b, c:
r = (abc) ÷ [tex]4 \sqrt{s(s-a)(s-b)(s-c)} [/tex]
r = [tex] \frac{(80cm)(100cm)(140cm)}{4 \sqrt{140cm(160cm-80cm)(160cm-100cm)(160cm-140cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{(160cm)(80cm)(60cm)(20cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{15,360,000cm ^{4} } } [/tex]
r =[tex] \frac{1,120,000cm ^{3} }{4 (3,919.18cm ^{2}) } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{15,676.72cm ^{2} } [/tex]
r ≈ 71.44 cm
ANSWER: The radius of circumscribing circle is 71.44 cm.
Method B:
r = [tex] \frac{abc}{ \sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-a)} } [/tex]
Substitute the given measurements of sides a, b and, c, then evaluate.
The result is the same.
Choose one that you can easily remember:
Method A:
1.) Find the semi-perimeter (s) of the triangle, where a, b, and c are the sides
of the triangle:
s = (a + b+ c) ÷ 2
2.) Solve for the radius (r) given the semi-perimeter (s) of the triangle, and the
the sides a, b, and c:
r = [tex] \frac{abc}{4 \sqrt{s(s-a)(s-b)(s-c)} } [/tex]
Solution using Method A:
a = 80 cm; b = 100 cm; c = 140 cm
Find the triangle's semi-perimeter: (half of the triangle's perimeter)
s = (80 + 100 + 140) ÷ 2
s = 320 cm ÷ 2
s = 160 cm
Solve for radius given the semi-perimeter (160 cm) and sides a, b, c:
r = (abc) ÷ [tex]4 \sqrt{s(s-a)(s-b)(s-c)} [/tex]
r = [tex] \frac{(80cm)(100cm)(140cm)}{4 \sqrt{140cm(160cm-80cm)(160cm-100cm)(160cm-140cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{(160cm)(80cm)(60cm)(20cm)} } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{4 \sqrt{15,360,000cm ^{4} } } [/tex]
r =[tex] \frac{1,120,000cm ^{3} }{4 (3,919.18cm ^{2}) } [/tex]
r = [tex] \frac{1,120,000cm ^{3} }{15,676.72cm ^{2} } [/tex]
r ≈ 71.44 cm
ANSWER: The radius of circumscribing circle is 71.44 cm.
Method B:
r = [tex] \frac{abc}{ \sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-a)} } [/tex]
Substitute the given measurements of sides a, b and, c, then evaluate.
The result is the same.
Ang iyong kontribusyon ay napakahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Sama-sama tayong lumikha ng isang mas matibay na samahan. Salamat sa pagbisita sa IDNStudy.com. Bumalik ka ulit para sa mga sagot sa iyong mga katanungan.