Magtanong at makakuha ng eksaktong mga sagot sa IDNStudy.com. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Sagot :
y = ax² + bx + c ⇒ y = f(x)
f(x) = ax² + bx + c
Given: x² - 12y + 5 = 0
Convert to y = ax² + bx + c
x² - 12y + 5 = 0
x² + 5 = 12y
12y = x² + 5
12y/12 = x²/12 + 5/12
y = [tex] \frac{ x^{2} }{12} + \frac{5}{12} [/tex]
A.) Set y to = 0
[tex] \frac{ x^{2} }{12} + \frac{5}{12} =0[/tex]
Solve for roots (zeroes) using the method extracting the square roots.
Use this method when b = 0 in equation ax² + bx + c = 0.
[tex]12( \frac{ x^{2} }{12} + \frac{5}{12} =0)[/tex]
x² + 5 = 0
x² = -5
[tex] \sqrt{ x^{2} } = \frac{+}{-} \sqrt{-5} [/tex]
x₁ = [tex]i \sqrt{5} [/tex]
x₂ = [tex]-i \sqrt{5} [/tex]
THE ZEROES (ROOTS) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
It means that the equation has no real roots, and the graph (parabola) that opens upward is above the x-axis.
B.) Find the vertex of the parabola.
Since the equation has a positive leading leading term ([tex] \frac{ x^{2} }{12} [/tex]), the parabola opens upward (u-shaped), and the vertex is the minimum.
Vertex = (h, k)
h = [tex] \frac{-b}{2a} [/tex]
h = [tex] \frac{0}{2( \frac{1}{12}) } [/tex]
h = 0
k = f(h)
Plug -in the value of h (0) to x in equation [tex] \frac{x ^{2} }{12} + \frac{5}{12} [/tex]
k = [tex] \frac{0 ^{2} }{12} + \frac{5}{12} [/tex]
k = 0 + ⁵/₁₂
k = ⁵/₁₂
Vertex = (h, k)
Vertex = (0, ⁵/₁₂)
FINAL ANSWER: The vertex is (0, ⁵/₁₂) and the zeroes (roots) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
Please click image to see the graph of the given equation.
f(x) = ax² + bx + c
Given: x² - 12y + 5 = 0
Convert to y = ax² + bx + c
x² - 12y + 5 = 0
x² + 5 = 12y
12y = x² + 5
12y/12 = x²/12 + 5/12
y = [tex] \frac{ x^{2} }{12} + \frac{5}{12} [/tex]
A.) Set y to = 0
[tex] \frac{ x^{2} }{12} + \frac{5}{12} =0[/tex]
Solve for roots (zeroes) using the method extracting the square roots.
Use this method when b = 0 in equation ax² + bx + c = 0.
[tex]12( \frac{ x^{2} }{12} + \frac{5}{12} =0)[/tex]
x² + 5 = 0
x² = -5
[tex] \sqrt{ x^{2} } = \frac{+}{-} \sqrt{-5} [/tex]
x₁ = [tex]i \sqrt{5} [/tex]
x₂ = [tex]-i \sqrt{5} [/tex]
THE ZEROES (ROOTS) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
It means that the equation has no real roots, and the graph (parabola) that opens upward is above the x-axis.
B.) Find the vertex of the parabola.
Since the equation has a positive leading leading term ([tex] \frac{ x^{2} }{12} [/tex]), the parabola opens upward (u-shaped), and the vertex is the minimum.
Vertex = (h, k)
h = [tex] \frac{-b}{2a} [/tex]
h = [tex] \frac{0}{2( \frac{1}{12}) } [/tex]
h = 0
k = f(h)
Plug -in the value of h (0) to x in equation [tex] \frac{x ^{2} }{12} + \frac{5}{12} [/tex]
k = [tex] \frac{0 ^{2} }{12} + \frac{5}{12} [/tex]
k = 0 + ⁵/₁₂
k = ⁵/₁₂
Vertex = (h, k)
Vertex = (0, ⁵/₁₂)
FINAL ANSWER: The vertex is (0, ⁵/₁₂) and the zeroes (roots) are [tex]i \sqrt{5} [/tex] and [tex]-i \sqrt{5} [/tex].
Please click image to see the graph of the given equation.

Ang iyong presensya ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbabahagi ng iyong nalalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. Gawin mong pangunahing mapagkukunan ang IDNStudy.com para sa maasahang mga sagot. Nandito kami para sa iyo.