IDNStudy.com, ang iyong destinasyon para sa mga sagot ng eksperto. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.

point Q is 20 meters away from the center of the circle.if the diameter of the circle is 10 meters and a line through Q is tangent to the circle at T.find QT

Sagot :

QT^2 = 25 times 15
QT^2 = 375
QT = 19.365
Radius = 1/2 (diameter)
            = 1/2 (10)
            = 5 meters

Point Q is  point outside the circle.  T is a point on the circle and the point of tangency of the circle and QT.

A line tangent to the circle is perpendicular to its radius. Therefore, QT is the base, radius is the leg, and center to Q is the hypotenuse.

Using Pythagorean Theorem:
(QT)² = 20² - 5²
(QT)² = 400 - 25
(QT)² = 375

[tex] \sqrt{(QT) ^{2} } = \sqrt{375} [/tex]

QT = [tex] \sqrt{375} [/tex]

QT = [tex] \sqrt{(25)(15)} [/tex]

QT = [tex]5 \sqrt{15} [/tex] meters