IDNStudy.com, ang iyong mapagkukunan ng eksaktong at maaasahang mga sagot. Sumali sa aming interactive na platform ng tanong at sagot para sa mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Direction: Find the following. 1. 2. 3. 5. Fund 21 Find m2A Find mBOX Find m2 Find BC O o 6. 7. 8. 9. 10. Find m2 Find m2B Find . Find m2 Find m2 AC​

Direction Find The Following 1 2 3 5 Fund 21 Find M2A Find MBOX Find M2 Find BC O O 6 7 8 9 10 Find M2 Find M2B Find Find M2 Find M2 AC class=

Sagot :

✒️CIRCLES

1. Find the measure of inscribed angle A that intercept the arc BC measuring 90°.

  • [tex] \tt m \angle A= \frac{1}{2}(90 \degree) [/tex]

  • [tex]\tt m \angle A = \red{45 \degree}[/tex]

2. Find the measure of inscribed angle A that intercept the arc BC measuring 50°.

  • [tex] \tt m \angle A= \frac{1}{2}(50\degree) \\ [/tex]

  • [tex] \tt m \angle A =\red{ 25\degree}[/tex]

3. Find the measure of arc BC that is twice the measure of inscribed angle A.

  • [tex] \tt m\overset{\frown}{BC} = 2(40\degree) [/tex]

  • [tex] \tt m\overset{\frown}{BC} =\red{ 80\degree}[/tex]

4. Solve for the measure of arc BC that is twice the measure of inscribed angle A.

  • [tex] \tt m\overset{\frown}{BC} = 2(55\degree) [/tex]

  • [tex] \tt m\overset{\frown}{BC} =110\degree[/tex]

» The measure of the central angle BOC is as same as the measure of its intercepted arc BC.

  • [tex] \tt m\angle{BOC} = \red{110\degree}[/tex]

6. Find the measure of intercepted arc BC that is twice the measure of inscribed angle A.

  • [tex] \tt m\overset{\frown}{BC} = 2(55\degree) [/tex]

  • [tex] \tt m\overset{\frown}{BC} = 110\degree[/tex]

» Arc ABC is a semicircle, then arc AB and BC are supplementary.

  • [tex] \tt m\overset{\frown}{AB} + 110\degree = 180\degree [/tex]

  • [tex] \tt m\overset{\frown}{AB} = 180\degree - 110\degree[/tex]

  • [tex] \tt m\overset{\frown}{AB} = 70\degree[/tex]

» Find the measure of inscribed angle C that intercept the arc AB measuring 70°.

  • [tex] \tt m \angle C = \frac{1}{2} (70\degree) \\ [/tex]

  • [tex] \tt m \angle C = \red{35\degree}[/tex]

7. Arc ACB is a semicircle, then arc AC and CB are supplementary.

  • [tex] \tt m\overset{\frown}{AC} + 150 \degree = 180\degree [/tex]

  • [tex] \tt m\overset{\frown}{AC} = 180\degree - 150 \degree[/tex]

  • [tex] \tt m\overset{\frown}{AC} = 30 \degree[/tex]

» Find the measure of inscribed angle B that intercept the arc measuring 30°.

  • [tex] \tt m \angle B = \frac{1}{2} (30\degree) \\ [/tex]

  • [tex] \tt m \angle B = \red{15\degree}[/tex]

8. The two opposite angles of a quadrilateral are supplementary.

  • [tex] \tt m\angle{B} + 120\degree = 180\degree[/tex]

  • [tex] \tt m\angle{B} = 180\degree - 120\degree[/tex]

  • [tex] \tt m\angle{B} = \red{60\degree}[/tex]

9. Find the measure of intercepted arc BC that is twice the measure of inscribed angle A.

  • [tex] \tt m\overset{\frown}{BC} = 2(70\degree) [/tex]

  • [tex] \tt m\overset{\frown}{BC} = 140 \degree[/tex]

» Arc ABC is a semicircle, then arc AB and BC are supplementary.

  • [tex] \tt m\overset{\frown}{AB} + 140\degree = 180\degree [/tex]

  • [tex] \tt m\overset{\frown}{AB} = 180\degree - 140\degree[/tex]

  • [tex] \tt m\overset{\frown}{AB} = 40\degree[/tex]

» Find the measure of inscribed angle C that intercept the arc AB measuring 40°.

  • [tex] \tt m \angle C = \frac{1}{2} (40\degree) \\ [/tex]

  • [tex] \tt m \angle C = \red{20\degree}[/tex]

#CarryOnLearning

#BrainlyMathKnower

[tex]\qquad\qquad\qquad\qquad\qquad\qquad\boxed{\tt{sunday \: at [04-03-2022]}} \\ \qquad\qquad\qquad\qquad\qquad\qquad\boxed{\tt{[5:43 \: pm]}}[/tex]