IDNStudy.com, ang iyong gabay para sa malinaw at eksaktong mga sagot. Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.

B. find the surface area of each figure

1.r= 4 cm
h = 10 cm

2.r = 2 m


pa help po ​


B Find The Surface Area Of Each Figure1r 4 Cm H 10 Cm2r 2 Mpa Help Po class=

Sagot :

PROBLEM 1

  • 352 cm²

Given:

  • r = 4 cm
  • h = 10 cm

To find the surface area of a cylinder, use the formula given by radius and height.

  • [tex] \tt SA = 2\pi {r}^{2} + 2\pi rh[/tex]
  • [tex] \tt SA = 2\pi(4) { }^{2} + 2\pi(4)(10)[/tex]
  • [tex] \tt SA = 2\pi(2) {}^{4} + 80\pi[/tex]
  • [tex] \tt SA = 2 {}^{5}\pi + 80\pi[/tex]
  • [tex] \tt SA = 32 \pi + 80\pi[/tex]
  • [tex] \tt SA = 112\pi[/tex]

We know that a symbol π is equivalent to 3.14. So,

  • [tex] \tt SA= (112)(3.14) \approx352[/tex]

PROBLEM 2

  • 50.24

Given:

  • r = 2m

We know that a sphere has no height. To find the surface area of a sphere, use the formula given by its radius.

  • [tex] \tt SA = 4\pi r {}^{2} [/tex]
  • [tex] \tt SA = 4\pi(2) {}^{2} [/tex]
  • [tex] \tt SA =( {2}^{2} \pi)( {2}^{2} )[/tex]
  • [tex] \tt SA = {2}^{4} \pi[/tex]
  • [tex] \tt SA = (16)(3.14)[/tex]
  • [tex] \tt SA = 50.24[/tex]

Note:

The surface area of figures are always expressed in squared. (²)

[tex]•••••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \LARGE\boxed{\sf THE \: PROBLEM \: NO.(1)}[/tex]

[tex] \tt{GIVEN:} [/tex]

  • [tex] \tt{r \: = \: 4 \: cm} [/tex]
  • [tex] \tt{h \: = \: 10 \: cm} [/tex]

[tex] \tt{ANSWER:} [/tex] [tex] \boxed{ \tt 352 \: cm²} [/tex]

SOLUTION:

  • SA = 2πr² + 2πrh
  • SA = 2π(4)² + 2π(4)(10)
  • SA = 2π(2)⁴ + 80π
  • SA = 2⁵π + 80π
  • SA = 32π + 80π
  • SA = 112π
  • SA = (112) (3.14) ≈ 352

Therefore, the answer is 352 cm²

[tex]•••••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \LARGE\boxed{\sf THE \: PROBLEM \: NO.(2)}[/tex]

[tex] \tt{GIVEN:} [/tex]

  • [tex] \tt{r \: = \: 2m} [/tex]

[tex] \tt{ANSWER:} [/tex] [tex] \boxed{ \tt 50.24 \: m² } [/tex]

SOLUTION:

  • SA = 4πr²
  • SA = 4π(2)²
  • SA = (2²π)(2²)
  • SA = 2⁴π
  • SA = (16)(3.14)
  • SA = 50.24

Therefore, the answer is 50.24 m²

[tex]•••••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]