Magtanong at makakuha ng eksaktong mga sagot sa IDNStudy.com. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad.

B. find the surface area of each figure

1.r= 4 cm
h = 10 cm

2.r = 2 m


pa help po ​


B Find The Surface Area Of Each Figure1r 4 Cm H 10 Cm2r 2 Mpa Help Po class=

Sagot :

PROBLEM 1

  • 352 cm²

Given:

  • r = 4 cm
  • h = 10 cm

To find the surface area of a cylinder, use the formula given by radius and height.

  • [tex] \tt SA = 2\pi {r}^{2} + 2\pi rh[/tex]
  • [tex] \tt SA = 2\pi(4) { }^{2} + 2\pi(4)(10)[/tex]
  • [tex] \tt SA = 2\pi(2) {}^{4} + 80\pi[/tex]
  • [tex] \tt SA = 2 {}^{5}\pi + 80\pi[/tex]
  • [tex] \tt SA = 32 \pi + 80\pi[/tex]
  • [tex] \tt SA = 112\pi[/tex]

We know that a symbol π is equivalent to 3.14. So,

  • [tex] \tt SA= (112)(3.14) \approx352[/tex]

PROBLEM 2

  • 50.24

Given:

  • r = 2m

We know that a sphere has no height. To find the surface area of a sphere, use the formula given by its radius.

  • [tex] \tt SA = 4\pi r {}^{2} [/tex]
  • [tex] \tt SA = 4\pi(2) {}^{2} [/tex]
  • [tex] \tt SA =( {2}^{2} \pi)( {2}^{2} )[/tex]
  • [tex] \tt SA = {2}^{4} \pi[/tex]
  • [tex] \tt SA = (16)(3.14)[/tex]
  • [tex] \tt SA = 50.24[/tex]

Note:

The surface area of figures are always expressed in squared. (²)

[tex]•••••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \LARGE\boxed{\sf THE \: PROBLEM \: NO.(1)}[/tex]

[tex] \tt{GIVEN:} [/tex]

  • [tex] \tt{r \: = \: 4 \: cm} [/tex]
  • [tex] \tt{h \: = \: 10 \: cm} [/tex]

[tex] \tt{ANSWER:} [/tex] [tex] \boxed{ \tt 352 \: cm²} [/tex]

SOLUTION:

  • SA = 2πr² + 2πrh
  • SA = 2π(4)² + 2π(4)(10)
  • SA = 2π(2)⁴ + 80π
  • SA = 2⁵π + 80π
  • SA = 32π + 80π
  • SA = 112π
  • SA = (112) (3.14) ≈ 352

Therefore, the answer is 352 cm²

[tex]•••••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \LARGE\boxed{\sf THE \: PROBLEM \: NO.(2)}[/tex]

[tex] \tt{GIVEN:} [/tex]

  • [tex] \tt{r \: = \: 2m} [/tex]

[tex] \tt{ANSWER:} [/tex] [tex] \boxed{ \tt 50.24 \: m² } [/tex]

SOLUTION:

  • SA = 4πr²
  • SA = 4π(2)²
  • SA = (2²π)(2²)
  • SA = 2⁴π
  • SA = (16)(3.14)
  • SA = 50.24

Therefore, the answer is 50.24 m²

[tex]•••••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]