IDNStudy.com, ang iyong pangunahing mapagkukunan para sa mga sagot ng eksperto. Sumali sa aming platform ng tanong at sagot upang makakuha ng eksaktong tugon sa lahat ng iyong mahahalagang tanong.

pahelp po akwjhwjwwkhwbw​

Pahelp Po Akwjhwjwwkhwbw class=

Sagot :

Answer:

Given Parameters:

  • Distance (d) = 1.2 mm = 1.2 × 10-³ m
  • Side (a) = 6 cm = 6 × 10-² m
  • Charge (Q) = 300 μC = 300 × 10-⁶ C

To Find :

  • Energy stored between the two plates.

Solution:

[tex]\footnotesize\longrightarrow\: \sf E_{(Total \: Stored \: Energy)} = \dfrac{Q^2}{2C} \\ [/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{Q^2}{2 \bigg \{ \frac{A\epsilon_0 }{d} \bigg \}} \qquad \: \bigg \lgroup \because \rm \: C = \dfrac{A \epsilon_0}{d} \bigg \rgroup\\ [/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{Q^2d}{2A\epsilon_0}[/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{(300 \times {10}^{ - 6})^{2} 1.2 \times 10^{ - 3} }{2 \times 6 \times {10}^{ - 2} \times 6 \times {10}^{ - 2} \times 8.85 \times {10}^{ - 12} }\qquad \: \bigg \lgroup \because \rm \: \epsilon_0 = 8.85 \times {10}^{ - 12} \: C^2/Nm^2 \bigg \rgroup[/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{9 \times {10}^{4} \times {10}^{ - 12} \times 1.2 \times 10^{ - 3} }{2 \times 36\times {10}^{ - 4} \times 8.85 \times {10}^{ - 12}} \\ [/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{108 \times {10}^{ - 1} \times {10}^{4} \times {10}^{ - 12} \times 10^{ - 3} }{72\times {10}^{ - 4} \times 8.85 \times {10}^{ - 12}} \\ [/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{108 \times \cancel{{10}^{ - 12} } }{72\times {10}^{ - 4} \times 885 \times {10 }^{ - 2} \times \cancel{ {10}^{ - 12}}} \\[/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{108 }{6372 \times 10^{1} \times {10}^{ - 6}}[/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{108 }{6372 \times {10}^{ - 5}}[/tex]

[tex]\footnotesize\longrightarrow \:\sf E_{(Total \: Stored \: Energy)} = \dfrac{108 \times {10}^{5} }{6372 } \\ [/tex]

[tex]\footnotesize\longrightarrow \: \underline{\underline{\sf E_{(Total \: Stored \: Energy)} \approx0.016\times {10}^{5} \: J}}\\ [/tex]