IDNStudy.com, ang iyong mapagkukunan para sa mga sagot ng eksperto at komunidad. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad.

find the equation of the circle having the endpoints of the diameter (4 ,6) and (0, -2)

Sagot :

Steps in deriving the equation of circle given the endpoints of its diameter:
Given: (4,6) and 0,-2)

1) Find the center (h, k)  using midpoint formula.
Midpoint = [tex]( \frac{x_{1}+x_{2} }{2}, \frac{y_{1}+y_{2} }{2} )[/tex]

x₁ = 4     x₂ = 0
y₁ = 6     y₂ = -2

Midpoint (Center) = [tex]( \frac{4+0}{2}, \frac{6+ (-2)}{2}) [/tex]
                             = (⁴/₂, ⁴/₂)
                             = (2, 2)

The center (h,k) is (2, 2).

2)  Find the distance of the radius by solving for the distance of the two endpoints of diameter divided by 2.  (Radius is 1/2 of diameter of the circle.)

Radius = [tex]( \sqrt{(x_{2}-x_{1} )^{2} + (y_{2} -y_{1} ) ^{2}) [/tex]/2

Radius = [tex]( \sqrt{(0-4) ^{2}+(-2-6) ^{2} })/2 [/tex]

Radius = [tex]( \sqrt{(4) ^{2}+(-8) ^{2} })/2 [/tex]

Radius = [tex](1/2) \sqrt{(16)(5)} [/tex]

Radius = (1/2)(4) [tex] \sqrt{5} [/tex]

Radius = [tex]2 \sqrt{5} [/tex]

3)  Equation:
Standard or Center-Radius Form:
(x - h)² + (y-h)² = r²

(x - 2)² + (y - 2)² = ([tex](2 \sqrt{5} ) ^{2} [/tex]

(x-2)² + (y-2)² = (4)(5)

(x-2)² + (y-2)² = 20

4.) Equation of the circle in general form, x² + y² + Cx + Dy + E = 0:
(x-2)² + (y-2)² = 20

x² - 4x + 4 + y² - 4y + 4 - 20 = 0

x² + y² - 4x - 4y - 16 = 0