IDNStudy.com, ang iyong mapagkakatiwalaang platform para sa mga eksaktong sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.

what value of k will make the system -kx+y=3 and 4x-y=2 a consistent-independent?


Sagot :

Eliminate y:

- kx + y = 3  ⇒  Equation 1
  4x - y =  2  ⇒  Equation 2

-kx : 4x = 3 : 2

-kx (2) = 4x (3)   
-2xk = 12x         

-2xk/-2x = 12x/-2x

k = - 6 

Solve the system, substitute - 6 for k in Equation 1

-(-6)x + y = 3
6x + y = 3
y = -6x + 3  ⇒  Equation 3

Substitute for x by  - 6x + 3 for y in Equation 2:
4x - (-6x + 3) = 2
4x + 6x - 3 = 2
10x = 2 + 5
10x/10 = 5/10
x = 1/2

Solve for y, by substituting 1/2 to x in Equation 3:
y = -6x + 3
y = -6(1/2) + 3
y = - 3 + 3
y = 0

The solution to the system is (1/2, 0).

To check, x = 1/2;   y = 0
Equation 1:  
6x + y = 3
6 (1/2) + 0 = 3
3 + 0 = 3
3 = 3

Equation 2:
4x - y = 2
4 (1/2) - 0 = 2
2 - 0 = 2
2 = 2

Therefore - 6 for k satisfies the system as consistent and independent with only one solution (1/2, 0) which is the point of intersection of the given two equations/graphs.



Pinahahalagahan namin ang bawat tanong at sagot na iyong ibinabahagi. Patuloy na maging aktibo at magbahagi ng iyong karanasan. Sama-sama tayong magtatagumpay. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.