Sumali sa IDNStudy.com at tuklasin ang komunidad ng mga taong handang tumulong. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

what value of k will make the system -kx+y=3 and 4x-y=2 a consistent-independent?


Sagot :

Eliminate y:

- kx + y = 3  ⇒  Equation 1
  4x - y =  2  ⇒  Equation 2

-kx : 4x = 3 : 2

-kx (2) = 4x (3)   
-2xk = 12x         

-2xk/-2x = 12x/-2x

k = - 6 

Solve the system, substitute - 6 for k in Equation 1

-(-6)x + y = 3
6x + y = 3
y = -6x + 3  ⇒  Equation 3

Substitute for x by  - 6x + 3 for y in Equation 2:
4x - (-6x + 3) = 2
4x + 6x - 3 = 2
10x = 2 + 5
10x/10 = 5/10
x = 1/2

Solve for y, by substituting 1/2 to x in Equation 3:
y = -6x + 3
y = -6(1/2) + 3
y = - 3 + 3
y = 0

The solution to the system is (1/2, 0).

To check, x = 1/2;   y = 0
Equation 1:  
6x + y = 3
6 (1/2) + 0 = 3
3 + 0 = 3
3 = 3

Equation 2:
4x - y = 2
4 (1/2) - 0 = 2
2 - 0 = 2
2 = 2

Therefore - 6 for k satisfies the system as consistent and independent with only one solution (1/2, 0) which is the point of intersection of the given two equations/graphs.