Sumali sa IDNStudy.com at simulang makuha ang maaasahang mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.

pa answer Po ty.

[tex] \: \: \: \: \: \: \: \: \: [/tex]


Pa Answer Po Tytex Tex class=

Sagot :

✒️QUADRANT

[tex]\large\bold\green{Formula:}[/tex]

Centroid by integration:

  • [tex]\mathsf{A{\bar{x}}={\displaystyle\int}x\:dA}[/tex]

  • [tex]\mathsf{A{\bar{y}}=\dfrac{1}{2}{\displaystyle\int}y\:dA}[/tex]

Refer to the figure

  • [tex]\mathsf{y^2=4ax}[/tex]
  • [tex]\mathsf{y=\sqrt{4ax}}[/tex]

[tex]\\[/tex]

Solving for A,

  • [tex]\mathsf{dA=ydx}[/tex]

  • [tex]\mathsf{A={\displaystyle\int_{0}^{a}}y\:dx}[/tex]

  • [tex]\mathsf{A={\displaystyle\int_{0}^{a}}\sqrt{4ax}\:dx}[/tex]

  • [tex]\mathsf{A=\sqrt{4a}{\displaystyle\int_{0}^{a}}\sqrt{x}\:dx}[/tex]

  • [tex]\mathsf{A=2\sqrt{a}\left[\dfrac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{a}}[/tex]

  • [tex]\mathsf{A=2\sqrt{a}\left(\dfrac{2}{3}\right)\left(a^{\frac{3}{2}}\right)}[/tex]

  • [tex]\mathsf{A=\dfrac{4}{3}a^2}[/tex]

Solving for [tex]\mathsf{\bar{x}}[/tex],

  • [tex]\mathsf{A{\bar{x}}={\displaystyle\int}x\:dA}[/tex]

  • [tex]\mathsf{A{\bar{x}}={\displaystyle\int_{0}^{a}}x(\sqrt{4ax})dx}[/tex]

  • [tex]\mathsf{A{\bar{x}}=2\sqrt{a}{\displaystyle\int_{0}^{a}}x^{\frac{3}{2}}dx}[/tex]

  • [tex]\mathsf{A{\bar{x}}=2\sqrt{a}\left[\dfrac{x^{\frac{5}{2}}}{\frac{5}{2}}\right]_{0}^{a}}[/tex]

  • [tex]\mathsf{A{\bar{x}}=2\sqrt{a}\left(\dfrac{2}{5}\right)(a^{\frac{5}{2}})}[/tex]

  • [tex]\mathsf{A{\bar{x}}=\dfrac{4}{5}a^3}[/tex]

  • [tex]\mathsf{\bar{x}=\dfrac{\dfrac{4}{5}a^3}{A}}[/tex]

  • [tex]\mathsf{\bar{x}=\dfrac{\dfrac{4}{5}a^3}{\dfrac{4}{3}a^2}}[/tex]

  • [tex]\mathsf{\bar{x}=\dfrac{3}{5}a}[/tex]

Solving for [tex]\mathsf{\bar{y}}[/tex],

  • [tex]\mathsf{A{\bar{y}}=\dfrac{1}{2}{\displaystyle\int}y\:dA}[/tex]

  • [tex]\mathsf{A{\bar{y}}=\dfrac{1}{2}{\displaystyle\int_{0}^{a}}\sqrt{4ax}(\sqrt{4ax})dx}[/tex]

  • [tex]\mathsf{A{\bar{y}}=\dfrac{1}{2}{\displaystyle\int_{0}^{a}}4ax\:dx}[/tex]

  • [tex]\mathsf{A{\bar{y}}=2a{\displaystyle\int_{0}^{a}}x\:dx}[/tex]

  • [tex]\mathsf{A{\bar{y}}=2a\left[\dfrac{x^2}{2}\right]_{0}^{a}}[/tex]

  • [tex]\mathsf{A{\bar{y}}=a^3}[/tex]

  • [tex]\mathsf{{\bar{y}}=\dfrac{a^3}{A}}[/tex]

  • [tex]\mathsf{\bar{y}=\dfrac{a^3}{\dfrac{4}{3}a^2}}[/tex]

  • [tex]\mathsf{\bar{y}=\dfrac{3}{4}a}[/tex]

Therefore, the answer is:

  • [tex]\boxed{\mathsf{\left(\dfrac{3}{5}a,\:\dfrac{3}{4}a\right) \ or \ (0.6a, 0.75a)} }[/tex]

#CarryOnLearning

[tex]\qquad\qquad\qquad\qquad\qquad\qquad\tt{fri \: 03-04-2022} \\ \qquad\qquad\qquad\qquad\qquad\qquad\tt{3:02 \: pm}[/tex]

View image MasterOfMathProblem

Answer:

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]